Is the “Weak Force” the Key to LENR?

By David Niebauer

In the early part of the 20th Century physicists theorized that a mysterious force held the nucleus of an atom together.  When it was demonstrated that this force could be tapped, releasing tremendous amounts of energy, a wave of excitement swept the scientific world.  It took only a few short years before atomic energy theories were experimentally validated in the first nuclear weapon detonations.  Hiroshima and Nagasaki followed.  Most of us alive today were born under the mushroom cloud that has loomed over humanity ever since.  Accessing the power of the strong nuclear force has been a mixed blessing:  it has brought the possibility of energy beyond our wildest dreams but with nightmarish consequences that were literally unimaginable a generation ago.

That physicists would become enamored of the strong nuclear force is understandable:  the energy locked in the nucleus of the atom is potent, it is real, and the challenge of harnessing it for useful purposes has become the “holy grail” of scientific endeavor.

But could another, more subtle, “fundamental force” hold the key to our energy future?

The Fundamental Forces of Nature and the Weak Force

Of the four fundamental forces (gravity, electromagnetism, strong nuclear force and weak nuclear force), the “weak force” is the most enigmatic. Whereas the other three forces act through attraction/repulsion mechanisms, the weak force is responsible for transmutations – changing one element into another – and incremental shifts between mass and energy at the nuclear level.

Simply put, the weak force is the way Nature seeks stability.  Stability at the nuclear level permits elements to form, which make up all of the familiar stuff of our world.  Without the stabilizing action of the weak force, the material world, including our physical bodies, would not exist.  The weak force is responsible for the radioactive decay of heavy (radioactive) elements into their lighter, more stable forms.  But the weak force is also at work in the formation of the lightest of elements, hydrogen and helium, and all the elements in between.

A good way to understand the weak force is in comparison with the actions of the other forces at work in the center of the Sun.  The Sun, although extraordinarily hot (10 million degrees), is cool enough for the constituent parts of matter, quarks, to clump together to form protons.  A proton is necessary to form an element, which occurs when it attracts an electron – the simplest case being hydrogen, which is composed of a single proton and a single electron.  By the force of gravity, protons are pulled together until two of them touch – but because of the electrostatic repulsion of their two positive charges, their total energy becomes unstable and one of the protons undergoes a form of radioactive decay, turning it into a neutron and emitting a positron (the antiparticle of an electron) and a neutrino.  This action forms a deuteron (one proton and one neutron), which is more stable than the two repelling protons.  This transmutation of proton into neutron plus beta particles is mediated by the weak force.

A neutron is slightly heavier, and therefore less stable, than a proton.  So the normal action of the weak force causes a neutron to decay into a proton, an electron and a neutrino.  At any rate, at the center of the Sun, once a deuteron is formed, it will fuse with another free proton to form helium-3 (one neutron and two protons), releasing tremendous amounts of energy.  These helium-3 atoms then fuse to form helium-4 and releasing two more protons and more energy.  The release of energy in these fusion reactions from the strong force is what powers the Sun.  But the entire process is set in motion by the weak force.

Enter “Cold Fusion”

When in 1989 Pons and Fleishman stunned the world by reporting nuclear reaction signatures at room temperatures, physicists were understandably baffled and skeptical.  Given that virtually all nuclear physicists at the time were trained in the powerful energies of the strong force, table top fusion made no sense.  The fact that the phenomenon was dubbed “cold fusion” was unfortunate and likely contributed to almost universal rejection by the scientific community.  Standard theoretical models were not able to explain how cold fusion might even be possible and unless it could be understood it was pointless and a waste of time.  A comment attributed to Wolfgang Pauli describes the reaction of most physicists at the time: “its not right; its not even wrong”.  Without a coherent theory to explain it, it wasn’t even science at all.

This all changed in 2006 with the publication of a paper in the peer-reviewed The European Physical Journal by Allan Widom and Louis Larsen titled “Ultra low momentum neutron catalyzed nuclear reactions on metallic hydride surfaces”.

In this paper for the first time a theoretical basis was put forth that explained many of the anomalous results being reported by experimentalists in the new field of Low Energy Nuclear Reactions (LENR) – and the common explanatory action was the weak force.

As explained by Dennis Bushnell, Chief Scientist at NASA Langley Research Center in his article “Low Energy Nuclear Reactions, the Realism and the Outlook”:

“The Strong Force Particle physicists have evidently been correct all along. “Cold Fusion” is not possible. However, via collective effects/ condensed matter quantum nuclear physics, LENR is allowable without any “miracles.” The theory states that once some energy is added to surfaces loaded with hydrogen/protons, if the surface morphology enables high localized voltage gradients, then heavy electrons leading to ultra low energy neutrons will form– neutrons that never leave the surface. The neutrons set up isotope cascades which result in beta decay, heat and transmutations with the heavy electrons converting the beta decay gamma into heat.”

Brief Description of Widom-Larsen Theory

Not everyone agrees that the Widom-Larsen Theory (“WLT”) accurately explains all, or even most, of the observed phenomenon in LENR experiments.  But it is worth a brief look at what WLT proposes.

In the first step of WLT, a proton captures a charged lepton (an electron) and produces a neutron and a neutrino.  No Coulomb barrier inhibits the reaction.  In fact, a strong Coulomb attraction that can exist between an electron and a nucleus helps the nuclear transmutation proceed.

This process is well known to occur with muons, a type of lepton that can be thought of as very heavy electrons – the increased mass is what pulls the lepton into the nucleus.  For this to occur with electrons in a condensed matter hydrogen system, local electromagnetic field fluctuations are induced to increase the mass of the electron.  Thus, a “mass modified” hydrogen atom can decay into a neutron and a neutrino.  These neutrons are born with ultra low momentum and, because of their long wavelength, get caught in the cavity formed by oscillating protons in the metal lattice.

These ultra low momentum neutrons, which do not escape the immediate vicinity of the cavity and are therefore difficult to detect, yield interesting reaction sequences.  For example, helium-3 and helium-4 are produced often yielding large quantities of heat.  WLT refers to these as neutron catalyzed nuclear reactions.  As Dennis Bushnell explains:  “the neutrons set up isotope cascades which result in beta decay, heat and transmutations.”  Nuclear fusion does not occur and therefore there is no Coulomb barrier obstruction to the resulting neutron catalyzed nuclear reaction.

Brief Description of Brillouin Theory

Robert Godes of Brillouin Energy Corp., claims that WLT explains some, but not all, of the observed LENR phenomena.  As Godes understands the process, metal hydrides stimulated with precise, narrow, high voltage, bipolar pulse frequencies (“Q-pulse”) cause protons or deuterons to undergo electron capture.  The metal lattice stimulation by the Q-pulse reverses the natural decay of neutrons to protons, plus beta particles, catalyzing an electron capture in a first endothermic step.  When the initial proton (or deuteron) is confined in the metal lattice and the total Hamiltonian (total energy of the system) reaches a certain threshold level by means of the Q-pulse stimulation, an ultra cold neutron is formed.  This ultra cold neutron occupies a position in the lattice where dissolved hydrogen tunnels and undergoes transmutation, forming a cascade of transmutations – deuteron, triton, quadrium – by capturing the cold neutron and releasing binding energy.  Such a cascading reaction will result in a beta decay transmutation to helium-4, plus heat.

The Q pulse causes a dramatic increase of the phonon activity, driving the system far out of equilibrium.  When this energy reaches a threshold level, neutron production via electron capture becomes a natural path to bring the system back to stability.

Theory and Experiment

Other well-known LENR theorists have implicated the weak force, including Peter Hagelstein, Tadahiko Mizuno, Yasuhiro Iwamura and Mitchell Swartz.  The project now, as with all scientific endeavor, is to match experimental evidence to theory.  The hope is that the electron capture/weak force theories will help guide new, even more successful experiments.  This process will also allow theorists to add refinement and new thinking to their models.  I am reminded of the two “laws” of physicists proposed by an early weak force pioneer:

1. Without experimentalists, theorists tend to drift.

2. Without theorists, experimentalists tend to falter.

(T.D. Lee, as quoted in “The Weak Force: From Fermi to Feynman” by A. Lesov).

Experimentalists have been reporting anomalous heat from metal hydrides since before Pons and Fleischmann.  But without a cogent theory, they have had to rely on ad hoc, trial and error methods.  Given this state of affairs, the progress made in the LENR field in the last twenty years is remarkable.  Perhaps we are now at the beginning of a new era in which theoretical models will guide a rapid transformation of the science.


Scientists have focused on the strong nuclear force due to the immense power that can be released from breaking the nuclear bond.  Less attention has been paid to the weak force, which causes transmutations and the release of energy in more subtle ways.  Recent theories that explain many of the phenomena observed in low energy nuclear reactions (LENR) implicate the weak force.  We are now at the stage where theory and experiment begin to complement each other to allow for the rapid transformation of the new science of LENR.

Journalistic disclosure:  David Niebauer is general legal counsel to Brillouin Energy Corp.

New Year’s Resolution: Commercialize Free Energy Technology

by David Niebauer

In the tradition of starting off the New Year with a resolution, I have decided to go large this year.  I predict that 2012 will be the year that low energy nuclear reaction technology (LENR), also known as “cold fusion,” breaks out of the lab and into the commercial market. I hereby resolve to commit my energy and resources to advance the commercialization of any device that generates clean, inexpensive, safe, abundant energy.

I recently co-founded Fusion Catalyst, Inc., a public benefit 501(c)(3) corporation with Bastiaan Bergman for just that purpose.  While we wait for a working reactor, we intend to support cold fusion research in any way we can.  Our “Open Catalyst” project is one step in this direction.  As it states on our website (, Open Catalyst is

“a crowd science project where many scientists globally can contribute to the search for the catalyzing material that enables low energy nuclear reactions. We plan to design and build a simple calorimeter reactor vessel that is automated and connected to the web. Scientists all over the world are invited to use this calorimeter and scan through potentially LENR-active materials. In this process, data is uploaded and shared in a completely open database. Every scientist in the world can slice and dice the data anyway he wishes. We envision that the power of the crowd can speed up the daunting task of searching for the secret catalyst.”

As the New Year commences, I thought I would try to articulate my view of the future of LENR – the reason we formed Fusion Catalyst in the first place.

First, I believe there are a number of inventors in the world who are on the verge of commercializing LENR technology.  Granted, many of these inventors do not come from established universities or government research programs.  What they do offer, however, is the promise of commercially useful reactors.  Give us access to a working reactor and we will put it to use.

The likely path for commercial introduction of this technology is through industrial and utility applications.  The reason for this is primarily economic.  It is reasonable for inventors who are not primarily concerned with academic research to seek out the largest markets and customers with the deepest pockets.  In addition, safety and permitting issues will be more rapidly resolved in the industrial application environment.

However, it is important that this technology not be concentrated in too few hands.  Ultimately, we believe that cold fusion will be an ideal distributed energy generation technology.  The materials — hydrogen and nickel — are not scarce; in fact, they are some of the most abundant elements on the planet.  The only thing of value therefore, and the thing to be controlled and “made scarce”, is the technology and application know-how.  Our goal is to have the technology and know-how distributed and made available on the largest scale possible.  This requires many scientists and inventors working and sharing their research and experience openly.

I do not believe that anyone will emerge with a fundamental “uber-patent” in this field.  I believe there will be many different approaches using different catalysts and perhaps no catalysts at all.  Let those who have filed patents show the world how their device works.  We will be happy to pay a reasonable royalty for its use. We have considered a patent pool or some other open source approach, but this will depend upon the available intellectual property and contributors to the project.  At this stage, there is still much research to be done.

Assuming that a working device becomes available under a scenario where the “scarce technology” does not make it cost-prohibitive, the first thing a reasonable man will do is explore how much useful work he can get out of it.  Even if the first devices are unstable and/or unpredictable, if it is useful we will put it to work.

The first distributed applications will likely be “off-the-grid” heating and cooling, as well as irrigation and other farming applications.  There is a wide range of applications for steam at sufficient temperatures.  And if electricity can be generated, whole communities can be formed outside of the metropolitan power centers of the world.

Another obvious application is desalination of water.  A working, inexpensive device used to produce clean, potable water would not only aid the most poverty stricken areas of the world, it would end the so-called “water wars” in a single stroke.

Other distributed applications would directly address hunger and poverty.  With cheap irrigation, new crops can be successfully grown, manual labor can be reduced and, eventually, hunger can be eliminated on the planet.

I anticipate an objection that, if we eliminate poverty in the world, we will be faced with a global crisis of overpopulation.  Even ignoring the Hobbsian cynicism underlying this objection (i.e., that we need war, poverty and infant mortality to keep human population in check), I believe that overpopulation will resolve itself in a world of abundance.  For one thing, people will not need to crowd into metropolitan power centers.  People will be free to spread out and live in what are now inhospitable areas of the planet.  Some will choose to remain in cities, but it will be a choice and not an existential imperative, as it is for many today.

Conflict is conditioned upon scarcity.  We don’t know what an “economics of abundance” would even look like.  I’m not saying that this new technology won’t bring new problems of its own – it will not transform human nature overnight.  But I am saying that, before we scare ourselves with unfounded nightmares, we should be open to the positive impact that such a technology can have on the world.

If the devices can eventually generate electricity without noxious emissions, without dangerous radiation, and without significant capital expenditures, we are freed from toil for the sake of survival.  Farming is difficult in most parts of the world.  With unlimited, free power, even if only in the form of steam, most of the work can be done mechanically.  Work will take on a totally different meaning.  New ways of living and associating will be invented.  We may actually start to thrive as a species on this planet.

Is this all a utopian dream? I don’t think so.  I am talking about what is possible for the human being. No one knows how things will turn out in the future.  I am dedicated to the global propagation of clean, limitless, free energy.  Reactors that employ nickel and hydrogen appear to be close to achieving these difficult-to-imagine goals. Don’t let it be suppressed, demonized, denigrated or over-protected.  The best way to accomplish this is through many different approaches to fundamental technology and applications.

We don’t know what an economics of abundance looks like.  Give us a working reactor capable of generating useful heat and we will begin exploring that question.  We believe that when this device is finally manifested, it will advance the human spirit in beneficial ways.  Fusion Catalyst was formed for the purpose of forwarding the work necessary to realize this goal.  We seek others who are like-minded to join us.

David Niebauer is a corporate and transaction attorney, located in San Francisco, whose practice is focused on financing transactions, M&A and cleantech.