2010 Nissan LEAF EV on a Freeway Near You

By John Addison (8/3/09). Nissan (NSANY) will be the first to have thousands of affordable freeway-speed electric vehicles on the highways. The new 2010 Nissan LEAF is a comfortable compact hatchback that seats five.

Although Tesla will be the first to have a thousand freeway-speed EV on the roads, the $100,000 price tag is out of reach for most of us. According to Nissan, the LEAF will be “competitively priced in the range of a well-equipped C-segment vehicle.” In late 2010, Nissan will finalize pricing and its sale and/or lease strategy. We expect the LEAF to start around $30,000. Buyers are likely to qualify for a $7,500 federal tax credit.

The Nissan LEAF will build on Nissan’s hybrid-electric success with the Altima Hybrid, which is in currently in the #6 position for U.S. cars with the lowest greenhouse gas emissions. The Nissan Altima Hybrid starts at $26,500.

Clean Fleet Report’s test drives of the Nissan EV demonstrated plenty of acceleration. The Nissan LEAF is powered by 24kWh of laminated compact lithium-ion batteries, which generate 90 kW of power, while its electric motor delivers 80kW/280Nm.

The LEAF has a range of about 100 miles. In 8 hours you are good for another 100 miles with a Level 2 AC200V home-use charger; in 26 minutes you can be 80 percent charged with a Level 3 DC 50kW quick charger. The 440v Level 3 chargers are likely to be scare, expensive, and certainly not for home use.

Nissan did not announce that LEAF batteries can be quickly swapped, but Nissan continues to partner with Better Place.

Many drivers will only spend $20 to $40 per month for electricity – a fraction of what they now spend for gas at the pump. Early adopters of electric vehicles, especially fleets, often use their solar power to charge vehicles.

In 2010, the Nissan will first be available in CA, OR, WA, AZ, TN, and NC.

Nissan is working with a number of global partners to accelerate development of a charging infrastructure, early fleet use, and education. For example, when I recently spoke at a San Diego cleantech event (presentation videos) San Diego Gas and Electric (SRE) announced early roll-out of 1,000 Nissan LEAF and an extensive charging infrastructure. Clean Fleet Report predicts that Nissan will be the first to have 10,000 freeway-speed electric vehicles on the road.

Toyota, Chevrolet, Chrysler and others will compete with Nissan by offering plug-in hybrids which will go up to 40 miles in battery electric mode and then engage gasoline engines to provide hundreds of miles of added range until the next gasoline fill-up or electric charge.

Nissan, however, is focused on zero-emission leadership. Longer term, Nissan expects to see many urban centers, such as London, where only ZEV will be exempt from expensive daily congestion fees. The 100-mile range meets the needs of 90 percent of U.S. daily driving and meets the needs of households with two or more cars.

Nissan will also face battery-electric competition next year from Ford (F), Chrysler, Mercedes (DAI) Smart, and dozens of emerging innovators. Electric vehicles are not new to the United States. 40,000 now drive light electric-vehicles on corporate and college campuses, typically with 25 mph speeds and 25 mile ranges.

Nissan LEAF employs an exclusive advanced IT system. Connected to a global data center, the system can provide support, information, and entertainment for drivers 24 hours a day. The dash-mounted monitor displays Nissan LEAF’s remaining power – or “reachable area” – in addition to showing a selection of nearby charging stations. Another state-of-the-art feature is the ability to use mobile phones to turn on air-conditioning and set charging functions – even when Nissan LEAF is powered down. An on-board remote-controlled timer can also be pre-programmed to recharge batteries.

The LEAF has a distinctive aerodynamic design. The “blue earth” color theme of the Aqua Globe body color of Nissan LEAF’s introductory model compliments the blue dashboard and instrumentation.

The first of Nissan’s EV’s will be manufactured at Oppama, Japan, with additional capacity planned for Smyrna, Tennessee, USA. Meanwhile, lithium-ion batteries are being produced in Zama, Japan, by the Nissan-NEC JV with additional capacity planned for the USA, the UK and Portugal, and other locations.

Nissan’s leadership will accelerate the manufacturing of fully-functional electric vehicles in volume. Manufacturing volume will drive down cost, making zero-emission vehicles cost competitive with gasoline counterparts. Electric vehicles will likely be less expensive for people to drive with low-cost nighttime charging. It will be easy for people to save on emissions when they are saving money at the same time.

John Addison publishes the Clean Fleet Report. He is the author of Save Gas, Save the Planet.

Chrysler to Make Plug-in SUV, Minivan and New EVs

By John Addison (9/24/08). Chrysler builds on the success of its 38,000 GEM EVs that are currently on the road in the U.S. with new battery-electric vehicle and plug-in hybrid announcements. Any time I visit university towns, corporate and government fleets, I see these GEM electric vehicles being used for practical transportation and hauling. Often, they are powered by solar roofs and carports.

The new GEM Peapod will be available for purchase in 2009, with more models to come. Eco-friendliness gets a fresh face with the GEM Peapod. The GEM Peapod brings beautiful aerodynamic style to a gas-free, emission-free vehicle. This light electric vehicle has a maximum speed of 25 miles per hour and a range of 30 miles before requiring at least 6 hours for an adequate recharge of its lead-acid batteries. Peapod Specs

Three freeway-speed vehicle electric vehicle announcements were also made this September 24 by Chrysler’s ENVI – Dodge EV, Jeep EV and Chrysler EV. The development of Chrysler’s Electric Vehicles and Range-extended Electric Vehicles is led by ENVI – representing the first four letters of “environmental” – the Company’s in-house organization that was formed to focus on electric-drive production vehicles and related advanced technologies. Discussions are taking place with several lithium battery suppliers including A123.

The Jeep EV is a plug-in hybrid Jeep Wrangler SUV with an estimated 40 mile range in electric mode, before a small gasoline engine is engaged. The vehicle may give record fuel efficiency for customers that want SUVs, from families hauling kids and trailers to fleets. The Jeep EV will compete with the plug-in hybrid offering from Saturn VEU.

The Jeep EV uses an electric motor, an advanced lithium-ion battery system, and a small gasoline engine with an integrated electric generator to produce additional energy to power the electric-drive system when needed. The 200 kW (268 horsepower) electric motor generates 400 N•m (295 lb.-ft.) of torque. With approximately eight gallons of gasoline, the Jeep EV has a range of 400 miles, including 40 miles of zero fuel-consumption, zero-emissions, all-electric operation.

Minivan drivers have been longing for better mileage as the shuttle vans full of people and stuff. The new Chrysler Town and Country will use the same plug-in hybrid drive system as the Jeep EV.

Chrysler’s announcement should increase pressure on Toyota to announce a hybrid mini-van and for Honda to announce a more fuel efficient van using diesel.

For sports car enthusiasts, Tesla has new competition in the form of the Dodge EV, a hot two-seater with a body designed by Lotus. This battery-electric will have a range of 150 to 200 miles between charges – more miles, when driven with a feather touch; much less, with a lead-foot.

The electric-drive system consists of three primary components: a 200 kW (268 horsepower) electric motor, an advanced lithium-ion battery and an integrated power controller. The 200 kW electric-drive motor generates 650 N•m (480 lb.-ft.) of torque. The instant high torque of the electric-drive motor delivers outstanding performance, accelerating the Dodge EV to 60 mph in less than five seconds. The Dodge EV has a top speed of more than 120 mph.

Chrysler plans to have 100 of the new ENVI vehicles in fleets in 2009 and to start taking production consumer orders in 2010.

Three weeks ago, I had the chance to talk with Chrysler President Jim Press, an executive who is famous for staying in close touch with customer and dealer interests and issues. He knows how to make hybrid vehicles a success. He was President and COO of Toyota USA when Toyota made the Prius a best seller and when Toyota grew to global market leadership. After 37 years at Toyota, Mr. Press could have coasted into retirement. Instead he joined Chrysler as President and Vice Chairman, where he will be integral to building a new company.

In his travels, he notes a strong interest in EVs among younger people – he refers to this market segment as Millennials. Should Chrysler win with the new generation, they could be customers for decades. Look for Chrysler to extend the development of advanced, production-intent electric vehicles, and that it will apply electric-drive technology to its front-wheel-drive, rear-wheel-drive and body-on-frame four-wheel-drive platforms in the next several years.

Jim Press, when talking recently with the Western Automotive Journalist, stated, “We need a new business model based on one word – Reality.” The new management team inherited a 4 million car per year overhead with sales falling to one million per year in the new era of high gasoline prices. Mr. Press is cutting unprofitable sales such as rental car fleets. He is focusing on a future of vehicles that give customers a visceral emotional connection with their car, while using electric drive systems to address fuel economy and environmental concerns.

Jim Press continues to move aggressively. After talking into the evening with California journalists, he took off for a red-eye flight back to Detroit. He wants to see Chrysler moving at the speed of their new vehicles.

John Addison publishes the Clean Fleet Report

A Passion for Plug-ins

By John Addison (8/7/08). Toyota President Katsuaki Watanabe spoke about his dream of building a car that could cross the United States on a single tank of gasoline. A plug-in hybrid running on E85 would potentially use only one gallon of gasoline every 500 miles in a blend with five gallons of ethanol, with the rest of the energy being fueled by electricity and biofuel.

In a recent article, I shared the stories of fleets and enthusiastic advocates and individuals who have converted their hybrids to be plug-in hybrids. Most people, however, will wait for vehicles that are designed from the ground-up to be plug-in hybrids. These vehicles will be warrantied by major manufacturers. Future plug-in hybrids will have larger electric motors, smaller engines, lithium battery stacks, and optimized control systems.

GM has announced plans for new plug-in sales by the end of 2010. Toyota is more likely to first deliver hundreds of fleet evaluation cars in 2010 and may follow with sales in 2011. Because both may start with limited numbers of vehicles and long wait times, it may be 2011 before you could get delivery of a new plug-in hybrid.

Toyota has put ten of its prototype plug-in hybrid into test applications in Japan and California. These test vehicles are Priuses with nickel metal hydride (NiMH) batteries. Toyota is being a bit secretive about its new plug-in hybrid. The car is likely to be smaller and lighter than the Prius and use lithium batteries. By carrying less weight and more advanced batteries, Toyota can give the vehicle greater electric-only range, possibly 40 miles which would accommodate the daily range requirements of 78% of all U.S. drivers.

General Motors has made clear statements that it will start taking orders for the Chevy Volt from U.S. consumers by the end of 2010. Last December, I attended a General Motors showing of its Chevy Volt – an elegant four-door sedan shown in this photo which I took. One GM designer admitted that the Mercedes CLS gave some inspiration for the Volt. The Chevy Volt can be driven 40 miles in electric-mode using 16kW of lithium batteries, before its small one liter engine is engaged. 16kW is twelve times the storage of my Prius NiMH batteries.

The Volt uses an electric drive system with a small ICE in series that is only used to generate added electricity, not give power to the wheels. GM’s modular E-Flex propulsion could be adapted to various engines including diesel, fuel cells, and potentially battery-electric.

Ford currently has the SUV with the best fuel economy in the Ford Escape Hybrid. A number of fleets have contracted with vehicle system integrators to convert the Escape Hybrid to be a plug-in. Ford delivered twenty of its own Escape Plug-in Hybrid prototypes to major electric utility SCE. The SUV uses a 10 kWh lithium-ion battery pack from Johnson Controls-Saft. The PHEV uses a blended operating strategy, and delivers an equivalent 30-mile all-electric range.

A hybrid battery might use a state of charge depletion window of twenty percent. A plug-in hybrid conversion kit might use a state of charge depletion window of 80 percent, and only be willing to warranty the battery for two or three years. GM will want to offer customers ten year warranties by having 150,000 mile target lives for their batteries. GM will likely use a state of charge depletion window of 50 percent with the Volt. While GM and Toyota see long-term market share advantage by being first to market with a plug-in, other auto makers are cautious.

Daimler is actively expanding the use of electric drive systems in a number of vehicles. The Mercedes Smart Car will be offered as an electric vehicle. The larger Sprinter Van will include a plug-in offer in the future. Several fleets have demonstrated Sprinter Vans converted to be plug-ins. In the future, Daimler may offer its own Plug-in Sprinter.

Plug-in hybrids will face growing competition from electric vehicles, which have more limited range, but have no engine and therefore never require a fuel like gasoline or diesel. At times some of these EV makers have floated the idea of plug-ins in the future. Such comments have come from Nissan-Renault, Tesla, BYD, and others.

In this era of record gasoline prices, people are using many successful approaches to spend less for gas and cut emissions. A record number are cutting personal miles by taking part in employer flexwork programs, car pooling, using transit, and grouping trips. Households are maximizing use of their most fuel efficient vehicles while leaving the gas guzzler parked. More are buying fuel efficient cars. Plug-in hybrids will become a growing part of the solution to save gas and slow global warming.

Plug-in hybrids are destined to be a major success. According to the California Electric Transportation Coalition, if automakers begin producing plug-ins within the next few years, 2.5 million cars could be plug-ins by the year 2020, saving 11.5 million tons of CO2 and 1.14 billion gallons of gasoline each year.

Complete Article about New Plug-ins

John Addison publishes the Clean Fleet Report.

Hydrogen Goes Public in Southern California

By John Addison (6/26/08). On April 20, 2004, after 40 years of fighting it was all smiles between auto executives from Detroit and the regulators of California’s health and emissions. That day a new governor signed the historic California Hydrogen Highways Executive Order. California would be energy independent, instead of consuming more oil than all nations except the USA and China. You read that right. 38 million Californians uses more oil each year than all of Japan, all of Germany, and more than over one billion people in India.

Terry Tamminen, then Secretary California Environmental Protection Agency, now an energy and environmental consultant to governments and author of Lives per Gallon, walked to the podium and delivered a powerful address:

“More than six generations of Californians have relied upon petroleum to power everything from our industries to trips in the family car. But the basic motor vehicle has changed little in over a century, while air pollution sends one in seven children in this region to school every day carrying asthma inhalers. The health of our businesses is also threatened by rapidly rising fuel prices – – with no end in sight.

We cannot build a 21st Century economy on 19th century technology. Four decades ago, President Kennedy’s bold leadership sent Americans to the moon using hydrogen fuel and fuel cells. Today we can certainly harness that same technology to take us to work, to school, and on a family vacation.”

Terry Tamminen now drives a Honda FCX hydrogen fuel cell vehicle. The car is an electric vehicle that uses an electric motor, not an engine, and captures braking energy into advanced batteries. The car also has a fuel cell which takes hydrogen from the onboard storage tank and makes continuous electricity. From his home in Santa Monica, Terry can drive almost 200 miles then pull into a hydrogen station and refuel. Terry leases the car from Honda for $500 per month. The lease includes all maintenance and collision insurance. In the future, he may lease Honda’s latest fuel cell vehicle, the FCX Clarity for $600 per month, and get a range of almost 300 miles.

Unlike most places in the United States, Terry can find over ten hydrogen stations in the nearby Los Angeles area for a fill-up. Conveniently nearby is a new Shell gas station that also includes a hydrogen pump. The hydrogen is made from H2O at the station. Yes, water is split into hydrogen and oxygen. Customers like Terry can fuel their hydrogen vehicles in five minutes then drive off, an advantage over battery electric vehicles that are typically charged overnight.

With his zero-emission vehicle, Terry gets convenience while staying true to his environmental values.

This Thursday, June 26, Shell opened a new public hydrogen fueling station, conveniently located near two of the world’s busiest freeways – the 405 and the 10. The station looks like any other Shell Station.

You can also stop and fill-up with gasoline, buy snacks, use the restroom, even inflate your tires for better mileage. “California is leading the way with clean fuels,” said Graeme Sweeney, Executive Vice President for Shell Future Fuels and CO2 at the official opening of the station.

The electrolyzer will make enough hydrogen for about seven cars per day with 40kg of storage. Hydrogenics provided the integrated hydrogen fueling station, including electrolyzer, compressor, storage, and dispensing systems. In order to meet the demanding space requirements of the fueling station, Hydrogenics implemented a canopy system where all the components are mounted on the roof of the station canopy, minimizing the footprint of the hydrogen station.The electrolyzer is powered with Green Energy from the LA Department of Water and Power. By paying an extra 3 cents per kilowatt hour, Shell uses renewable energy generated by wind, solar, bioenergy, hydro and geothermal.

The station’s added capacity will be welcome by California’s fleet users of over 100 hydrogen vehicles who need refills on some of their trips. These fleet users include the nearby City of Los Angeles, City of Santa Monica, and UCLA. Most of California’s 24 hydrogen stations serve only their own fleets; some offer courtesy fills to other fleets. Shell competitor, BP, also offers a public hydrogen station at LA Airport, but this is not a full service station with gasoline filling.

The new Shell hydrogen station is also near the rich and famous who are starting to drive hydrogen vehicles. The station is easily accessed from Beverly Hills, Bel Air, Brentwood, and Santa Monica. Early customers of the new Honda FCX Clarity include actress Jamie Lee Curtis and filmmaker husband Christopher Guest, actress Laura Harris, and film producer Ron Yerxa.

Over the next three years, Honda will be leasing 200 FCX Clarity four-door sedans. In California, a three-year lease will run $600 a month, which includes maintenance and collision coverage. Although Shell will be selling hydrogen for about double the gasoline equivalent, the new Honda is speced at 68 miles per gallon equivalent (your mileage may vary), so drivers replacing gasoline vehicles that get less than 34 miles per gallon are likely to be money ahead in fuel costs.

The new FCX Clarity demonstrates the continuous improvement that Honda has made since its early fuel cell vehicles and electric vehicles with limited range: an advanced new four door, four-passenger sedan design, a greater than 30 percent increase in driving range to 280 miles, a 20+ percent increase in fuel economy, and a 40 percent smaller and 50 percent lighter new lithium-ion battery pack. Its fuel efficiency is three times that of a modern gasoline-powered automobile, such as the Accord.

American Honda has been recognized four consecutive times as America’s “greenest automaker” by the Union of Concerned Scientists, most recently in 2007, and has maintained the highest automobile fleet-average fuel efficiency (lowest fleet-average CO2 emissions) of any U.S. automaker over the past -years. In addition to hydrogen fuel cell vehicles, Honda is expanding its offerings of hybrid vehicles. My mother, who has carefully watched every dollar since her childhood in the Great Depression, loves the fuel economy of her Honda Civic Hybrid. The company is rumored to be planning a new hybrid for next year, priced well under $20,000 to reach a broader market.

Although Honda can deliver 280 mile range with hydrogen at the lower pressure 5,000 psi (35 mPa) delivered at this new hydrogen station, and at most stations, most other auto makers need double the pressure of 10,000 psi (70 mPa) to get adequate range.

General Motors is putting 100 of its larger crossover SUV Hydrogen Equinox on the road with fleets and individuals. For example, in Burbank the Walt Disney Company is using ten of the GM Equinoxes in a 30 month trial. They fill at a private 10,000 psi (70 mPa) station in Burbank to achieve a 160 mile range. Anyone filling an Equinox at the new Shell station is likely to only get an 80 mile range at the lower pressure. Burbank and Irvine have the only 10,000 psi (70 mPa) stations in California. GM’s Project Driveway

GM is placing a bigger bet on its Chevy Volt, the sleek 4-door sedan plug-in hybrid targeted to start selling in 2010. The vehicle will travel 40 miles on an electric charge, then use a small gasoline engine to extend its range. GM will eventually offer a family of vehicles using the Volt’s E-Flex architecture. One E-Flex concept car that GM has demonstrated, uses a fuel cell not a gasoline engine to give extended range. Plug-in hydrogen vehicles may be in GM’s future.

Both Honda and GM will face competition from Daimler which has over 100 hydrogen vehicles in use by customers. 60 are Mercedes F-Cell passenger vehicles, 3 are Sprinter delivery vans used by UPS and others, and close to 40 buses that transport thousands globally on a daily basis.

By using green energy to power the electrolysis, Shell provides a zero emission source-to-wheels solution. This overcomes the problem at half of California’s hydrogen stations where hydrogen is remotely reformed from natural gas, then truck transported, providing modest lifecycle GHG benefits when compared with the most fuel efficient gasoline hybrids. Newer stations, however, use approaches that dramatically reduce emissions such as pipelining waste hydrogen, onsite reformation, and electrolysis using renewable energy.

Over the next twenty years, hydrogen will neither be the sole solution to energy security and global warming, nor will it fail. There will not be a Hydrogen Economy. Nor, as some critics claim will there never be hydrogen vehicles.

Most likely, hydrogen will follow the success of natural gas vehicles. There are about five million natural gas vehicles in operation globally. Over 90% of the natural gas used in the USA is from North America. Transportation use of natural gas has doubled in only five years. Natural gas vehicles are popular in fleets that carry lots of people: buses, shuttles, and taxis. Los Angeles Metro uses 2,400 natural gas buses to transport millions. Most of the City of Santa Monica’s 595 vehicles run on natural gas, be they buses, trash trucks, or heavy vehicles.

Natural gas is primarily hydrogen. The molecule is four hydrogen atoms and one carbon. Steam reformation makes hydrogen from CH4 and H2O. Hydrogen is used in fuel cell electric vehicles with far better fuel economy than the natural gas engine vehicles that they replace. For example, at Sunline Transit, their hydrogen fuel cell bus is achieving 2.5 times the fuel economy of a similar CNG bus on the same route. Specifically 7.37GGE to the CNG vehicle’s 2.95GGE. Sunline has a new fuel cell bus on order with even great expected gains. NREL Report

Some major auto makers and energy providers calculate that it will only take about 40 public hydrogen stations and reasonably priced vehicles to the hydrogen dilemma of which comes first, vehicles or stations. By targeted the area from Burbank to Irvine, in Southern California, both are happening.

Public education will also be critical for hydrogen to be embraced by the public. In addition to the new hydrogen pump at the Santa Monica Boulevard Station, Shell has converted an unused service bay into a visitor center to help educate drivers about the use of hydrogen and fuel cell vehicles.

From London to Los Angeles, from Shanghai to Santa Monica, cities are planning for a zero-emission future. To encourage the transition, cities like London have imposed pricey congestion fees, but exempted zero-emission vehicles such as battery-electric and hydrogen fuel cell. In response, auto makers have accelerated their electric vehicle development and providers like Shell are planning on hydrogen stations for these cities.

Southern California will have cleaner air and less gasoline usage for several reasons including: electric rail, more fuel efficient vehicles, plug-in hybrids and electric cars. In an upcoming article, I will also document the growing success of public transportation in Southern California. The advances being made by major providers such as Honda, GM, and Shell are part of the solution.

Copyright © 2008. John Addison. Portions of this article may be included in John Addison’s upcoming book. Permission to reproduce if this copyright notice is included.


Turbo Diesels Take on Hybrids

By John Addison (6/17/08). Last week, I test drove of the new Volkswagen Jetta TDI Diesel. It accelerated on to the freeway faster than my Toyota Prius. Driving freeways and stop-go city, I wondered which would be the bigger seller, the new European turbodiesels or the Japanese Hybrids.

For Detroit, May was the cruelest month, as they were outsold by Asia for the first time. Fuel economy is in; gas guzzling is being punished. General Motors, Ford Motor and Chrysler combined for a record low market share of 44.4 percent, compared with 48.1 percent for 10 Asian brands, according to the Autodata Corporation, the industry statistics firm. Toyota and Honda continued to gain market share. In the months ahead, Detroit will also lose share to the new fuel efficient diesels from Europe where diesel vehicles outsell gasoline alternatives.

The VW Jetta TDI Diesel has an EPA rated mileage on 41 mpg highway and 30 city with a 6-speed stick; 40/29 with an automatic. With 140 horsepower, the Jetta has plenty of performance. The diesel Jetta has a combined EPA rating of 33, compared with 25 for its gasoline cousin. In other words, diesel delivers over 30 percent better mileage, making a real difference to the pocket book even with diesel fuel’s higher prices, and to reduced greenhouse gas emissions.

Over 1.5 million Toyota Priuses are now on the road. The 2008 Priuses has an EPA rated mileage of 48 city and 45 highway. Notice that this hybrid with regenerative braking actually gets better mileage in stop and go than on freeways where there is added wind resistance. The Prius computer automatically disengages the engine most of the time when stopped and going slowly, making it more quiet than diesels. The Prius has a bit more passenger room than the Jetta. Both have the same trunk space.

Using both an electric motor and an engine, the Prius has always delivered more performance than I’ve needed, whether accelerating on a freeway or climbing a steep and icy mountain road. With its powerful electric motor, the Prius has plenty of torque and good acceleration.

Honda is not happy with Toyota’s success in selling four hybrids for everyone that Honda has sold. In John Murphy’s interview with Honda about their green image, Honda CEO Mr. Fukui stated that “Honda’s image was better but has evened out with [Toyota] because of the strong image of one single model, the Prius, which Honda feels is a problem. Next year, we will come up with a dedicated hybrid vehicle. We feel this model will have to overwhelm and overtake Prius.” It is rumored that the new Honda hybrid will be priced well under $20,000 and reach a broader market. Wall Street Journal Interview

In the next two years, Honda is also likely to bring diesels to the U.S. including the Acura, the Odyssey minivan, and the CR-V SUV,.

In the USA, many prefer SUVs to sedans. SUVs have more cargo space. Some can seat more than five people, but not the more fuel efficient SUVs. They ride higher. Some drivers feel safer, although sedans like the Prius and Jetta score better than some SUVs in front and rear collisions and are loaded with air bags and advanced vehicle controls.

The Ford Escape Hybrid is the most fuel efficient SUV on the market with an EPA rating of 34 mpg highway and 30 city. The VW Tiguan is a somewhat comparable compact SUV, but less fuel efficient with 26 mpg highway and 19 city using a six-speed shift; and only 24/18 with an automatic. The Tiguan is a light-duty vehicle that is roomy with 95 cubic feet for passengers and 24 for cargo. Drop the back seat and you have 56 for cargo.

The new VW Jetta Sportswagen offers many SUV lovers with an appealing alternative. It achieves the same mileage as the Jetta sedan of 41 mpg highway and 30 city with a 6-speed stick; 40/29 with an automatic. With 33 cargo cubic feet, it beats SUVs like the Escape and Tiguan. Drop the back seat and you have 67 cubic feet. Watch VW take market share from SUVs that get half the miles per gallon of this new turbo diesel.

The Prius, Jetta, Jetta Sportswagen, Tiguan and Escape all seat five people. All have ways to accommodate a fair amount of cargo when the back seat is dropped. The four-door sedans offer much better fuel economy. In the new era of $4 per gallon gas prices, sedans are gaining market share at the expense of SUVs and light trucks, like the once best selling Ford F150.

For those who enjoy both performance and luxury, Mercedes and BMW have new turbo diesel cars with about 30% better fuel economy than their gasoline counterparts. Last summer when I was treated to test drives of the Mercedes E320 Bluetec and the BMW 535D. I was impressed with the quiet, smooth, performance of these larger sedans and with the roomy luxurious experience. Mercedes and BMW are also bringing concept hybrid diesels to auto shows.

The new turbo diesels are not your diesels of the past. They are quiet. I could smell no emissions. Emissions are far lower than those of the previous decade, meeting the tough new 50 state requirements including using ultra-low sulfur diesel.

Forget putting B100 biodiesel in these new engines with common rail and very high pressure injection. Don’t think about home brewed vegetable oil or recycled restaurant grease. Even B20 voids the warranty in the U.S., although not in Europe where biodiesel quality is better. B5 is the limit in the U.S. Biodiesel’s Future

For the moment gasoline hybrids give most people better fuel economy than the new turbo diesels in the U.S. The diesel hybrids being developed by VW, Audi, Mercedes, and BMW could change the game. Most significant are diesel plug-in hybrids. The VW Golf TDI Hybrid concept is demonstrating 69 mpg. The full-hybrid supports an all-electric mode.

Volkswagen is serious about hybrids and electric drive systems. In announcing a new lithium-ion venture with Sanyo, Prof. Martin Winterkorn, CEO of the Volkswagen Group stated that VW’s future “will be directed more strongly at making electrically powered automobiles alongside ones driven by more efficient combustion engines.” Volkswagen’s Audi is also demonstrating a plug-in hybrid concept Quattro.

Toyota is well aware of the success of diesel in Europe. Toyota is developing an advanced diesel engine in both the Tundra and Sequoia. Toyota plans to expand its use of hybrids in a wide-range of vehicles. Currently Toyota is constrained by trying to increase battery manufacturing enough to meet its current exploding demand for hybrids. Toyota also plans a plug-in hybrid by the end of 2010.

General Motors does not intend to watch Asia and European rivals take all its market share. In late 2010, it plans to offer both gasoline and diesel plug-in hybrids that will give the average driver over 100 miles per gallon. In the USA it will introduce the Chevy Volt gasoline plug-in hybrid. In Europe, GM will sell a diesel plug-in hybrid under the Opel brand.

Are there other offerings of hybrids, diesels, and other fuel efficient alternatives? Yes. A good starting point to compare vehicles is at the EPA’s Fuel Economy site.

Different people need different types of vehicles. Hybrids benefit everyone who spends part of their driving in cities and/or stop-go traffic. The new turbo diesels tend to get thirty percent better performance than their gasoline counterparts. Two long-term trends are converging – the expanded use of more fuel-efficient diesel engines and the expanded use of electric drive systems for hybrids, plug-in hybrids and for electric vehicles.

Cleaner vehicles, however, are not the whole solution. When gasoline hit $4 per gallon, Marcia and Christian convinced a car dealer to take their two vehicles as trade-in, including a large SUV, for one more fuel efficient SUV. Living and working in a city, only one vehicle was needed because both could use public transportation and car pool with friends. They save over $5,000 per year by sharing one vehicle. Now that is a real solution to save at the pump and help all of us by saving emissions.

John Addison publishes the Clean Fleet Report.