Posts

Why is it So Hard to Make Money in New Battery Technology?

Energy storage is still the rage in cleantech.  But after the collapse of A123 and Beacon, and the spectacular failure on the Fisker Karma in its Consumer Reports tests, fire  in Hawaii with Xtreme Power’s lead acid grid storage system and with NGK’s sodium sulphur system, and now battery problems grounding the Boeing Dreamliners, investors in batteries are again divided into the jaded camp, and the koolaid drinker camp.   Not a perjorative, just reality.  New batteries and energy storage is still one of the juiciest promised lands in energy.  And still undeniably hard.  Basically, investors are relearning lessons we learned a decade ago.

Batteries are just hard.  Investing in them is hard.  Commercialization of batteries is hard. So why is it so difficult to make money in new battery technology?

Above and beyond the numbers, there are a number of commonalities related to the commercialization and venture financing life cycle of battery technologies that seem to differ to some degree from other venture investments in IT or even other energy technologies.  Having looked at probably 100+ deals over the years, and on the back of an deep study we did a couple of years ago on benchmarking valuations in energy storage, here’s our take on the why.

Timing – Battery technology commercializations have historically tended to be one of the slower commercialization cycles from lab stage to market.  Startups and investors in batteries have a long history of underestimating both the development cycle, capital required, and the commercialization cycle, as well as underestimating the competitiveness of the market.

Special chemistry risk – There is significant risk in launching a technology in newer battery chemistry.  There have been only a limited number of new chemistries succeed, and when they do, as in the case of NiMH and Energy Conversion Devices, they are typically either co-opted by larger competitors obviating a first mover advantage (that advantage is typically much weaker in this field than others) or requiring expensive patent suits.  Also as in the case of NiMH, there is no guarantee the chemistry will have legs (just when it is hitting its stride, NiMH is already becoming eclipsed by Li-On.  This risk has proven to be especially high for new chemistries (like Zn type) that are not as widely researched, as the supply chain development does not keep pace.  In addition, the battery field is highly crowded, and research is old enough that and despite new chemistry in most cases truly defensible patent positions are extremely hard to come by, or provide only discrete advantages (ability to supply a range of quality product cheaply in high volumes (or with value add to the product) seems to be the primary competitive advantage).  Few battery technologies of any chemistry end up their commercialization cycle with anywhere near as sustained an advantage as their inventors expected.

High capital costs – In any case, almost all battery startups will require extremely large amounts of capital (on the order of US$50 to 100 mm+) to achieve commercialization (much higher for real manufacturing scale), and the end product margins tend not to be particularly high.  Even with stage gate, a very large portion of this investment (US$10-50 mm+), is generally required to be spent while the risk of technical and economic failure is still high.  In addition, during the manufacturing scale up phase post R&D, capital investment required per $1 of revenue growth tends to be linear, making these technologies capital intensive to grow.

Degradation of initial technical advantage – In many technology areas one can expect the performance of the final manufactured product to improve over the performance in initial lab results, In part because of the low cost target, high reliability, high volume requirements of this product type however, promising battery technologies, are often forced to make compromises in the scale up, manufacturing, and commercialization stages that mean the performance of actual product might be expected to fall from levels or rates seen in lab scale experiments (though cost may go the other way).    At the same time, battery performance of standard technologies, while mature, is a moving target, and during the time frame for commercialization, will often improve enough to obviate the need for the remaining technical advantages.

Size matters – Most battery products (whether batteries or components like anode or cathode materials or electrolyte), are sold to large customers with very large volume requirements, and highly competitive quality and performance requirements.  As a result, breaking into new markets generally is extremely hard to do in niche markets, and means a battery startup must prove itself and its technology farther and for a longer period of time than other technology areas (see capital costs, timing and down rounds).  Many battery components technology developers as a result will be relegated for early adopters to emerging customers with high risks in their own commercialization path.

Lack of superior economics from licensing – As a result of these size, capital cost, timing, and commercialization risk issues most battery technologies will command much lower and more short-lived economics than anticipated from licensing (or require expensive patent lawsuits to achieve), and will require almost as late a stage of development (ie manufacturing operating at scale with proof of volume customers) and commensurate capital requirements, as taking the product to market directly.

Propensity for down rounds – In addition, battery technology companies tend to have down rounds in much larger numbers in the post A rounds (Series B through D+) than other venture investment areas, as these challenges catch-up to investors and management teams who overestimated the scope of work, capital and timing required in the seed, A and B rounds.  In particular, battery investors have tended to invest in seed, A and B stage battery technologies (pre-scaled up manufacturing process or even lab and prototype scale) with expectations of typical venture style timing and economics.  Quite often instead, it is the B, C, or D investor group that post cram-down rounds achieve the Series A economics (even when the technology IS successful), and the seed, A and B investors suffer losses or subpar IRRs.

Stunning Cleantech 2012

It’s been a busy, ummm interesting year.  We’ve tracked profits to founders and investors of $14 Billion in major global IPOs on US  exchanges and $9 Billion in major global M&A exits from venture backed cleantech companies in the last 7-10 years.  Money is being made.  A lot of money.  But wow, not where you’d imagine it.

5 Stunners:

  • Recurrent Energy, bought by Sharp Solar for $305 mm, now on the block by Sharp Solar for $321 mm.  Can we say, what we have here gentlemen, is a failure to integrate?  This was one of the best exits in the sector.
  • Solyndra Sues Chinese solar companies for anti-trust, blaming in part their subsidized loans????????  Did the lawyers miss the whole Solyndra DOE Loan Guarantee part?  It kind of made the papers.
  • A123, announced bought / bailed out by Chinese manufacturer a month ago, now going chapter bankruptcy and debtor in possession from virtually the only US lithium ion battery competitor Johnson Controls?
  • MiaSole, one of the original thin film companies, 9 figure valuation and a $55 mm raise not too long ago (measure in months), cumulative c $400 million in the deal, sold for $30 mm to Chinese Hanergy just a few months later.  (Not that this wasn’t called over and over again by industry analysts.)
  • Solar City files for IPO, finally!

 

My call for the 5 highest risk mega stunners yet to come:

  • Better Place – Ummmmmmmmmm.  Sorry it makes me cringe to even discuss.  Just think through a breakeven analysis on this one.
  • Solar City – a terrifically neat company, and one that has never had a challenge driving revenues, margin, on the other hand . . .
  • BrightSource – see our earlier blog
  • Kior – again, see our prior comments.  Refining is hard.
  •  Tesla – Currently carrying the day in cleantech exit returns, I’m just really really really struggling to see the combination or sales growth, ontime deliveries, and margins here needed to justify valuation.

I’m not denigrating the investors or teams who made these bets.  Our thesis has been in cleantech, the business is there, but risk is getting mispriced on a grand scale, and the ante up to play the game is huge.

 

Top 10 Cleantech Subsidies and Policies (and the Biggest Losers) – Ranked By Impact

We all know energy is global, and as much policy driven as technology driven.

We have a quote, in energy, there are no disruptive technologies, just disruptive policies and economic shocks that make some technologies look disruptive after the fact.  In reality, there is disruptive technology in energy, it just takes a long long time.  And a lot of policy help.

We’ve ranked what we consider the seminal programs, policies and subsidies globally in cleantech that did the helping.  The industry makers.  We gave points for anchoring industries and market leading companies, points for catalyzing impact, points for “return on investment”, points for current market share, and causing fundamental shifts in scale, points for anchoring key technology development, points for industries that succeeded, points for industries with the brightest futures.  It ends heavy on solar, heavy on wind, heavy on ethanol.  No surprise, as that’s where the money’s come in.

1.  German PV Feed-in Tariff – More than anything else, allowed the scaling of the solar industry, built a home market and a home manufacturing base, and basically created the technology leader, First Solar.

2. Japanese Solar Rebate Program – The first big thing in solar, created the solar industry in the mid 90s, and anchored both the Japanese market, as well as the first generation of solar manufacturers.

3. California RPS – The anchor and pioneer renewable portfolio standard in the US, major driver of the first large scale, utility grade  wind and solar markets.

4. US Investment Tax Credit for Solar – Combined with the state renewable portfolio standards, created true grid scale solar.

5. Brazilian ethanol program – Do we really need to say why? Decades of concerted long term support created an industry, kept tens of billions in dollars domestic.  One half of the global biofuels industry.  And the cost leader.

6. US Corn ethanol combination of MTBE shift, blender’s, and import tariffs – Anchored the second largest global biofuels market, catalyzed the multi-billion explosion in venture capital into biofuels, and tens of billions into ethanol plants.  Obliterated the need for farm subsidies.  A cheap subsidy on a per unit basis compared to its impact holding down retail prices at the pump, and diverted billions of dollars from OPEC into the American heartland.

7. 11th 5 Year Plan  – Leads to Chinese leadership in global wind power production and solar manufacturing.  All we can say is, wow!  If we viewed these policies as having created more global technology leaders, or if success in solar was not so dominated by exports to markets created by other policies, and if wind was more pioneering and less fast follower, this rank could be an easy #1, so watch this space.

8. US Production Tax Credit – Anchored the US wind sector, the first major wind power market, and still #2.

9. California Solar Rebate Program & New Jersey SREC program – Taken together with the RPS’, two bulwarks of the only real solar markets created in the US yet.

10. EU Emission Trading Scheme and Kyoto Protocol Clean Development Mechanisms – Anchored finance for the Chinese wind sector, and $10s of Billions in investment in clean energy.  If the succeeding COPs had extended it, this would be an easy #1 or 2, as it is, barely makes the cut.

 

Honorable mention

Combination of US gas deregulations 20 years ago and US mineral rights ownership policy – as the only country where the citizens own the mineral rights under their land, there’s a reason fracking/directional drilling technology driving shale gas started here.  And a reason after 100 years the oil & gas industry still comes to the US for technology.  Shale gas in the US pays more in taxes than the US solar industry has in revenues.  But as old policies and with more indirect than direct causal effects, these fall to honorable mention.

Texas Power Deregulation – A huge anchor to wind power growth in the US.  There’s a reason Texas has so much wind power.  But without having catalyzed change in power across the nation, only makes honorable mention.

US DOE Solar Programs – A myriad of programs over decades, some that worked, some that didn’t.  Taken in aggregate, solar PV exists because of US government R&D support.

US CAFE standards – Still the major driver of automotive energy use globally, but most the shifts occurred before the “clean tech area”.

US Clean Air Act – Still the major driver of the environmental sector in industry, but most the shifts occurred before the “clean tech area”.

California product energy efficiency standards – Catalyzed massive shifts in product globally, but most the shifts occurred before the “clean tech area”.

Global lighting standards /regulations – Hard for us to highlight one, but as a group, just barely missed the cut, in part because lighting is a smaller portion of the energy bill than transport fuel or generation.

 

Biggest Flops

US Hydrogen Highway and myriad associated fuel cell R&D programs.  c. $1 Bil/year  in government R&D subsidies for lots of years,  and 10 years later maybe $500 mm / year worth of global product sales, and no profitable companies.

Italian, Greek, and Spanish Feed in Tariffs – Expensive me too copycats, made a lot of German, US, Japanese and Chinese and bankers rich, did not make a lasting impact on anything.

California AB-32 Cap and Trade – Late, slow, small underwhelming, instead of a lighthouse, an outlier.

REGGI – See AB 32

US DOE Loan Guarantee Program – Billion dollar boondoggle.  If it was about focusing investment to creating market leading companies, it didn’t.  If it was about creating jobs, the price per job is, well, it’s horrendous.

US Nuclear Energy Policy/Program – Decades, massive chunks of the DOE budget and no real technology advances so far in my lifetime?  Come on people.  Underperforming since the Berlin Wall fell at the least!

 

Blinded By Science

It’s virtually impossible (for me, at least) to understand or keep track of the organization of the U.S. Department of Energy.  And so, when I encountered the booth at the recent Energy Innovation Summit (as reported last week) for the generic-sounding DOE group called “Office of Science”, I had to stop and ask to find out more.

How can there be an office for something so broad as “science”? 

Well, it probably could be better termed as “Office of Research”, though I’m sure DOE leadership explicitly rejected that name as sounding way too academic and hence divorced from the commercial marketplace (i.e., private sector).

It’s true that the DOE Office of Science, the largest sponsor of basic research in the physical sciences in the U.S., is oriented to the needs of universities and research centers.  Notably, the Office of Science recently created 46 Energy Research Frontier Centers (ERFCs) spanning the U.S. to address some highly-specialized technical fields of relevance to energy requiring world-class capabilities.

To illustrate, there’s the Center for Atomic-Level Catalyst Design (CALCD), led by Louisiana State University.  Not to mention the Fluid Interface Reactions, Structures and Transport (FIRST) Center, led by the Oak Ridge National Laboratory.  Plus 44 other similar networks of scientific exploration.

While it’s true that this work is largely conducted by the ivory-tower, these ERFCs represent a very compelling resource for cleantech companies – large and small alike – facing particular technical challenges in developing new products and services for the energy sector.  When tackling especially thorny problems, it may be worth running the risk of getting blinded by science and peering into the bright shining light of a possibly-relevant EFRC.

Meeting the Energy and Climate Challenge

Dr. Steven Chu, Secretary of Energy and co-winner of the Nobel Prize for Physics (1997) delivered this speech “Meeting the Energy and Climate Challenge” at Stanford University on March 7, 2010, where he was formerly a professor.

Dr. Chu called on the students and faculty to take part in a new Industrial Revolution. At the epicenter of Silicon Valley, Stanford has been at the heart of the Information Technology Revolution – a catalyst for innovators such as Intel, Cisco, and Google. “America has the opportunity to lead the world in a new industrial revolution,” he was quoted in the Stanford Report.

Humans are causing Global Warming

The Novel Laureate discussed the irrefutable case for anthropogenic climate change. “There is a mountain of climate data going back to 1860.” Climate deniers say that humans are not causing global warming; rather it is a variance of solar energy including sun spots. Dr. Chu presented a chart showing the long-term continued rise in the global surface temperature while the solar energy reaching the atmosphere followed a predictable 11-year cycle of 1366 and 1367 watts per square meter (W/m²).

CO2 concentration has increased 40% since the start of the first industrial revolution, including all GHG such as methane the equivalent increase has been 50%. Irrevocable effects are under way. The Earth must warm until a new equilibrium is reached in about 150 years due to time lags such as deeper ocean warming. Added temperature increase will result from the long life of greenhouse gases, such as CO2, and from increased emissions.

The effects of warming can be measured. Satellites can now measure with good precision the mass of the earth. Dr. Chu observed that the ice mass is decreasing quadratically in the Greenland and decreasing in the Antarctic.

He also pointed to potential tipping points. There are huge uncertainties with the risk of 3.5 to 6 degree temperature increases.

United States Innovation in Energy Efficiency, Renewables, and Transportation
“The U.S. innovation machine is the greatest in the world,” said Dr. Chu. “When given the right incentives, [it] will respond.” Energy efficiency and renewables present major opportunities.

The U.S. market share of photovoltaics peaked in 1996 at over 40 percent of global production;
it is now less than 10%. Asia has the lead in batteries. China is spending $9 billion a month on clean energy. For example, the State Grid is investing $44 billion by 2012 and $88B by 2020 in UHV transmission lines with transmission losses over 2,000 kilometers that are less than 5%. China is committed to produce 100GW of wind power by 2020.

The United States Recovery Act is making an $80 billion down payment on a clean energy economy to regain our global competitiveness and create U.S. jobs. Dr. Chu described how the United States could be the world’s innovative leader. The most immediate opportunity is in energy efficiency.

Since 1975, the electricity saved from energy efficient refrigerators with smaller compressors exceeds the total energy produced from wind and solar. Consumers respond to Energy Star ratings. We are expanding our energy efficiency standards to include buildings. In answering a question, Dr. Chu noted that energy efficiency can be extended beyond buildings to city blocks and cities themselves. The Energy Secretary got laughs from the students when he demonstrated how to adjust the sleep mode settings on their PCs and Macs.

Optimistic about Research Breakthroughs

There is good reason for optimism for renewable energy. The cost factor of wind power has decreased by a power of ten. Learning curves for photovoltaics has also declined by over a factor of ten. On a large roof, the installed solar cost is still around $4 per watt. If you get to $1.50 per watt installed, solar takes off without subsidy.

Because renewables are variable they benefit from local and grid storage, and from a smart grid. Pumped water storage is often 75% efficient; compressed air has the potential to be 60 percent efficient. The DOE has funded research for a variety of grid and vehicle battery chemistries.
Currently the United States is dependent on oil. Most proven reserves for oil majors such as Exxon, BP, Shell, are now off-shore. It will cost more to extract from tar sands and with more CO2 emissions.

Transportation is the hardest area to improve, mused Dr. Chu. Liquid petroleum fuels have excellent energy density. A Boeing 777 departs with 45% of its weight in jet fuel which has an energy density of 43 Mj/kg and 32 Mj/liter; a lithium battery, only .54 Mj/kg and 0.9 Mj/liter, yet batteries can compete in cars because of the efficiency of electric drive systems and learning curve improvements. We need an automotive battery pack for less than $10,000 with 5,000 deep discharges and 5X higher storage capacity, stated Dr. Chu.
We need breakthroughs. Much can from great research labs, such as Dr. Chu’s former Bell Labs. Scientific research for new breakthroughs will be encouraged with multiple programs:

Energy Frontier Research Centers = university sponsored scientific research for
innovative energy solutions.
Energy Innovation Hubs = multi-disciplinary,
highly collaborative teams working under one roof.
Advanced Research Projects
Agency – Energy (ARPA-E) = short term, high risk – high reward research
projects

Energy Secretary Chu concluded with the first view of Earth from the Apollo 8 orbit of the lunar surface and with these two quotations:

“We came all this way to explore the moon and the most important thing is that
we discovered the Earth. – U.S. Astronaut Bill Anders (Dec 24, 1968)

“…We are now faced with the fact, my friends, that tomorrow is today. We are confronted with the fierce urgency of now. In this unfolding conundrum of life and history, there is such a thing as being too late.” – Dr. Martin Luther King (1967)

Video of Dr. Chu’s Speech at Stanford

John Addison publishes the Clean Fleet Report and speaks at conferences. He is the author of the new book – Save Gas, Save the Planet – now selling at Amazon and other booksellers.

My Year as NREL’s Entrepreneur in Residence

by Joel Serface

I just spent an amazing year at the National Renewable Energy Laboratory (NREL), but have no start-ups to show for it (yet).

A year ago, I was asked by
Kleiner Perkins to be the first Entrepreneur in Residence (EIR) at NREL. As a person who has been into energy and environmental technologies since gradeschool and as an early cleantech investor, it was an opportunity of a lifetime to become the first NREL EIR. It was a fantastic time spent with some of the best cleantech researchers in the world. I felt like a kid in a candy store. I tremendously added to my depth and breadth of cleantech history and knowledge.

The program itself was a grand experiment that I commend the Department of Energy for attempting. DOE’s calculus was that if they inserted a serial entrepreneur/investor backed by a brand-named VC firm into a lab that magic would happen and that an innovation would turn immediately into a company. At worst, DOE would learn a lot about what it and its labs need to do better to in order to accelerate ideas to market.

In the 11 months that I had the privilege to work inside NREL, I met with more than 300 researchers, identified around 30 promising technologies that I thought could reach commercial potential over the next several years, and honed in on 3 technologies that showed imminent promise. Unfortunately, the EIR program was timed too short to reach its full potential and to get the first one of these ideas set up as a company.


When building a new program into a research institution, timing is critically important. Based on my experience running the
Austin Clean Energy Incubator at The University of Texas, it took almost 11 months to start my first company. In 18 months, I had helped start 5 companies. In total, these companies raised more than $200 million, but none surpassed KP’s investment hurdle.

When I agreed to become NREL’s EIR, I set the expectation with DOE, NREL, and KP that starting a company that KP would back within one year should not be expected. While there are a tremendous number of opportunities for commercialization at NREL, they need to temporally match a VC firm’s thesis, meet its perceived portfolio needs, or surpass its hurdle for innovation. Given enough time, many of the 30 technologies described above could be built into companies, but not necessarily into ones KP would fund over the period of the EIR Program.


A more reasonable expectation for all was to use this program to begin developing long-term relationships with VCs and start-ups that helped the lab and DOE develop better tools and processes. If successful, this could help NREL deliver more companies or successful collaborations for the entire industry. With this approach in mind, there were many things learned by all parties that could benefit the entire venture capital and start-up industry. Here is what I learned…


First, NREL truly is “The National Renewable Energy Lab”. There is more breadth and depth of renewable energy and energy efficiency knowledge at NREL than any other institution on the planet. This alone is worth the price of admission. Unfortunately, the admission price has never been posted and there have only been secret alley entrances with secured doors to gain access to the lab. The lesson here is that new interfaces need to be developed by the lab to better expose its collective knowledge and translate it to the marketplace more effectively (thus EIR and other programs).

Second, the value in NREL is not just in its innovation, but more importantly in the value it can deliver across the life cycle of a technology…

  • Innovation – Yes, NREL has a great pool of researchers and ideas. They also have a network of other labs and universities they collaborate with (MIT, Stanford, University of Colorado, etc.). They will also soon be the hub of all DOE renewable energy intellectual property by managing DOE’s IP Portal.
  • Acceleration – NREL’s experience allows them to solve critical issues for external technologies and companies. Success stories abound from NREL helping First Solar, Uni-Solar, Clipper Wind, and many others. Identifying new ways to open up NREL to solve critical issues in start-ups is critical to the VC industry.
  • Analysis – NREL has a large division that does market, techno-economic, scaling, integration, policy, and plant design analysis. This primarily is developed for DOE and Congress (which really does not take advantage of this tremendous asset), but needs to be exposed to the financial services and venture capital sectors. I would encourage any thesis-driven VC firm or investment bank to review the work that has already been delivered by NREL.
  • Testing / Validation – NREL provides the service of testing all flavors or renewable energy, storage, transportation, building, and energy efficiency technologies. They even integrate multiple technologies as systems and perform accelerated testing. NREL’s validation not only helps get products designed into projects, it also provides critical feedback for future development.
  • Deployment – NREL has a cities and states program that helps advise on local policies, design parameters, and integrated solutions. NREL will increasingly be involved in regional test and implementation centers that will help scale technologies into cities and integrated pilot facilities.


Finally, NREL will only get better; now is the time to begin forging long-term relationships with them. With additional funding, increased DOE support, stronger linkage to national priorities, and new management focused on commercialization and market needs, NREL will deliver increasing value to the cleantech community. By becoming more intertwined with our imminent national priorities and community needs, the lab will increase its “NRELevance” in our nation’s day-to-day existence.


So, what next’s next for the NREL EIR? Over the short run, I will help deliver a national energy efficiency initiative focused on schools with the help of NREL. I will also continue supporting NREL as an entrepreneur/investor and as an advocate of the lab’s potential. I will also continue nurturing the many wonderful relationships I began forging through this program. And, yes, there will be start-ups forthcoming, unfortunately not within the short period of the EIR Program.


Thanks again to DOE, NREL, and KP for inviting me into this unique and invaluable experience. I hope that my time at NREL has made a difference there. If NREL is successful with its new management team and tools, then the entire cleantech community and nation will benefit.

Joel Serface served as NREL’s first Entrepreneur in Residence with Kleiner Perkins Caufield & Byers. As an investor and entrepreneur, Joel has planted cleantech seeds in Massachusetts, California, Texas, and now Colorado. Since 2000, Joel has started or invested into more than 20 cleantech companies with 5 liquidity events so far and has catalyzed the formation of numerous supporting cleantech institutions and regional and national policy initiatives.