EPRI’s View on Emerging Technologies

Writing in the January issue of POWER magazine, Arshad Mansoor (Senior Vice President of Research and Development at the Electric Power Research Institute) authored an article entitled “Emerging Technologies Enable ‘No Regrets’ Energy Strategy” to provide a soup-to-nuts vision of the future technology landscape for the electric power industry.

I don’t know that it’s possible that any player in the challenging U.S. electricity sector can pursue a path that is truly “no-regrets”, and it’s not easy to cover the gamut of technology possibilities of such a complex industry in one relatively brief article.  However, Mansoor’s essay does at least provide some visibility on the broad technology trends of the future, and lays out a taxonomy to consider the panoply of technologies that electric utilities will be facing in the years to come.

Mansoor begins by singling out the three key drivers facing the industry that imply “unprecedented change in the industry over the next 10 to 20 years — more change than in the previous 100 years”:

  1. The availability of natural gas and its increasing role in power generation.
  2. The expanding role of renewable generation.
  3. Technology challenges to reducing carbon dioxide, mercury and other emissions.

As an implication of these three forces at work, Mansoor outlines three categories of technologies that collectively represent a “no-regrets” approach:

  1. Flexible resources and operations.  This spans a variety of technologies to enable both the power grid and power generating sources to better accommodate the inherent variability of demand and an increasingly variable supply base in an uncertain world.  The range of technologies include energy storage, demand response, advanced transmission (e.g., HVDC, FACTS), improved software (for planning, forecasting and operational management), and fossil/nuclear powerplant operational flexibility.
  2. Long-term operations.  This seems to be centered on a variety of robotic technologies to improve the ability for utilities to remotely and efficiently monitor asset conditions and anticipate failures before they happen.
  3. An interconnected and flexible delivery system.  This covers a swath of technologies for power distribution and utilization under the umbrellas of “smart energy”, “grid resilience”, and “consumer-focused technologies”.  Smart energy covers standardization of communications protocols among the various devices on the grid, while capitalizing on the trend towards “big data”.  Grid resilience acknowledges the increasing concerns about security from man-made and natural disasters, with technologies ranging from unmanned aerial vehicles for damage assessment to using plug-in electric vehicles as a power source in the event of emergencies.  Consumer technologies acknowledges the trend towards ubiquity of the always-connected customer (not to mention utility employee), envisioning apps on smartphones and tablets to modulate or activate just about anything on the grid — from specific equipment at a powerplant or a substation to a particular light fixture at a house.

Alas, I think there are some gaps in this overview.  As a primary example, after acknowledging the prospect of tightening environmental regulations, Mansoor barely mentions air or water pollution control technology opportunities that electric utilities may need to consider — and it’s not clear where in his three categories such technologies would even fit.

So, I view Mansoor’s article as a good first starting point in developing a holistic perspective on the future of the electricity sector and how new technologies will reshape it.

It will be interesting to see if the industry evolves as much and as quickly as Mansoor asserts.  As one electric utility executive said to me and some colleagues many years ago, “no major innovation has been widely adopted in this industry unless and until it was essentially required by regulators.”  His point was that utilities are mainly judged by reliability and cost — and new technologies usually (at first) represent risk and entail higher cost than the status quo.  So, why exactly would utilities adopt something new?

I would like to hear EPRI’s take on why it believes that the electricity industry will change more in the next few decades than over the past century, especially given the dire political and economic situation facing the U.S. and the associated regulatory stalemates that are likely.  Perhaps Mansoor or his colleagues can write a follow-up article to address this very important question.

Report from Manitoba

In early August, at the invitation of the Government of Canada, the Chicago Council on Global Affairs (CCGA) organized a delegation of about a dozen energy executives from the Midwest U.S. to visit Canada to explore energy and environmental issues of common interest to the center of North America.  From my prior participation on a CCGA task force in 2009, which produced a report on the benefits to the Midwest from proactively participating in shaping energy/climate policy, I was lucky enough to be invited by the CCGA to join the group traveling to Canada.

Our first stop in Canada was Manitoba, where we focused on some of the more notable activities being undertaken by Manitoba Hydro, the provincial electric utility. 

We convened at Manitoba Hydro’s headquarters building, Manitoba Hydro Place, a two-year old 22-story gem in downtown Winnipeg.  The winner of several architectural awards, Manitoba Hydro Place is on a path to LEED Platinum certification, the highest standard of energy efficiency excellence.  The office tower has a number of fascinating heating, cooling and humidification/dehumidification concepts applied throughout in very fundamental ways that enable such a large building to be fully climate-controlled with only occasional reliance on a relatively small geothermal heat pump system, resulting in per-square-foot energy consumption levels about 20% the norm for buildings of this type.  This is especially impressive given the harsh climate that the building must face, with hot summers peaking at nearly 100 degrees Fahrenheit (35 degrees Celsius) and annual lows down to -35 degrees (in Celsius or Fahrenheit, it’s about the same). 

For a province with such abundant low-cost hydroelectric resources, one might wonder why Manitoba Hydro would emphasize energy efficiency not only at its own facilities, but also through a sizable demand-side management program rolled out to its customers.  In our briefing with the Premier (provincial minister), the genial and very-well-informed Greg Selinger, the overall energy strategy was made explicit:  Manitoba would like to more fully develop and export its immense run-of-river hydroelectric potential to the U.S. to serve the renewable energy markets there.  (Note that Manitoba drains about 20% of all of the precipitation that falls on the North American continent.)

So that we could see how vast this potential is, and how environmentally benign run-of-river hydro energy can be, we subsequently flew via small Perimeter Air turboprop to the northern Manitoba outpost of Gillam about 400 miles above Winnipeg, where we toured the 1200 megawatt Kettle Generating Station

Crucially unlike the Hoover Dam near Las Vegas or the Three Gorges Dam in China, Kettle didn’t displace habitats or populations by creating a massive new lake where one never existed.  True, some land was flooded as a result of Kettle’s construction, but let me assure you that the terrain and topography that was lost in the process is by no means scarce:  hundreds of thousands of square miles of virtually indistinguishable unpopulated territory stretch up there for as far as the eye can see from an airplane.

At Kettle, we were informed by plant management that fish (primarily pickerel) seemed to be genuinely unaffected by the existence of the hydro facility.  Long ago, I was told a joke by power engineers that “fish-friendly-hydro” is as oxymoronic as “grass-friendly-lawnmowers”.  This is probably why hydroelectricity is often ineligible to be considered “renewable” for the purposes of complying with renewable portfolio standard policies that have been enacted in many U.S. states:  many environmentalists aren’t very keen on hydro.   However, I can attest to having seen an otter and a loon both swimming in the downstream wake of the Kettle dam in waters that looked pretty turbulent — and I can only suspect that they were there at least partially for feeding purposes.

Because it is clearly zero-emission and involves a renewable resource (precipitation), and because it doesn’t cause sizable apparent negative impacts on the regional environment, I don’t see significant problems associated with more run-of-river hydro development in northern Manitoba. 

Manitoba Hydro allowed us into places and spaces for better viewing that I’m sure would have caused any OSHA  representative to faint.  The sights at Kettle were impressive, though nothing particularly rare within the power industry:  all big hydro facilities are impressive.

Just down the (gravel) road, though, was something quite extraordinary:  the Radisson Converter Station.

Conventional power grids are alternating current (AC).  Hydroelectric dams produce AC electricity.  However, shipping power across hundreds of miles of desolate landscape over AC lines is inefficient:  capital costs and losses are high, rights-of-way are wide.  In contrast, long-distance transmission using high-voltage direct current (HVDC) is much more economically-attractive on a per-mile basis.

There’s just one challenge:  converting thousands of megawatts of AC power at high-voltage to HVDC is not so easy, nor is it cheap.

Radisson is one of the largest and oldest HVDC converter stations in the world.  For as long as Kettle has been in place, Radisson has been taking its output, converting it into HVDC, and then sending it down a 400 mile set of 450 kv HVDC lines, to be reconverted into AC at a similar station (called Dorsey) in suburban Winnipeg.  Something of the magnitude of Radisson is very rare indeed.

Surrounded by switchgear and transformers akin to those found at any major substation on the power grid, a large warehouse-like building houses several sets of immense converter valves known as thyristors.  The heart of the operation, these thyristors are like transistors on steroids, chattering continuously like enormous jackhammers.  

The side-trip from Winnipeg to Gillam illustrated the basic conundrum that Manitoba faces:  all this excellent hydro resource, but it’s a thousand miles from the nearest underserved large load centers in the U.S.  While it’s relatively easy for Manitoba to increase its transmission capacity — the province can essentially assert control of rights-of-way, and population effects are minimal — getting the needed transmission expansions in the U.S. is oh-so-difficult, time-consuming and hence expensive. 

No doubt, the purpose of our visit to Manitoba was to build goodwill and generate more support as/if transmission expansion in the northern Midwest U.S. occurs to facilitate more movement of hydropower from Manitoba into the U.S.  From my standpoint, I’m in — but I also know that I alone (and my fellow travelers) will not have much incremental impact in aiding new transmission capacity to come on-line.

After about 28 whirlwind hours in Manitoba, our next stop on the Canadian tour was Alberta.  This will be the subject of a future posting, as there is even more of interest to the cleantech community to report from there.

Hola, Tres Amigas!

by Richard T. Stuebi

Something grand is emerging on the vast dusty plains of West Texas and Eastern New Mexico.

Tres Amigas is an ambitious scheme to interconnect the three primary power grids in the U.S. — the Western grid known as WECC, the Eastern grid known as the Eastern Interconnection, and the Texas grid known as ERCOT.

As profiled in an article called “A Highway for the 21st Century” in the recent edition of Energy Biz magazine, Tres Amigas aims to incorporate high-voltage direct current (HVDC) and grid-scale energy storage technologies to enable synchronization and massive power transfer capability across the three grids — which are almost completely separated today.

Although it might seem straightforward to tie together three power grids, this is actually a very challenging technological problem.  AC to DC to AC converter stations are required at the interfaces, relying upon HVDC technologies that, while beginning to be more commonly employed, have never been deployed at the scale — 5 gigawatts initially, up to 30 gigawatts eventually — contemplated by Tres Amigas.  And, to absorb the large swings in generation provided by wind and solar projects in the Great Plains, Texas and the Desert Southwest, Tres Amigas aims to install utility-scale batteries, a still-developing area of technology.

Not surprisingly for a large and first-of-a-kind project, it’s not cheap.  Tres Amigas is forecasted to require up to $1 billion in capital.  The question will be whether the investors in Tres Amigas can make good returns. 

Presumably, the business model is based on a combination of wheeling charges (revenues from renewable energy project developers seeking to move power from source to load centers) and ancillary service fees (charges to the three grid operators to keep each of them more stable in the face of shifting supply and demand conditions).  A “merchant project” of this type and magnitude has never been tried.  No doubt, it’s a very risky bet. 

Not surprisingly, American Superconductor (NASDAQ:  AMSC), whose technologies are at the core of Tres Amigas and who would stand to benefit big-time from its success, is an investor sponsoring the development team.  It wouldn’t surprise me to see the battery supplier, when chosen, also joining the mix.

The upside of Tres Amigas to renewable energy interests is big.  If the project is completed, works well, and remains financially solvent, it will debottleneck many limits to adding further wind and solar projects in the Southwestern U.S.  There’s plenty of sun and wind out there, but the constraining factor in tapping it has been the ability of the power grid to cope with the inherent fluctuations in power output. 

With its energy storage capability and linkage across three grids, Tres Amigas would be big and bold enough to enable many heretofore thwarted renewable project developers West of the Mississippi to effectively reach a broader spectrum of potential customers from L.A. to Dallas to St. Louis, while mitigating the operational problems — such as those at the infamous congestion point near McCamey TX — that grid operators and other skeptics use as a basis for criticizing or objecting to renewable energy development.