Posts

Shell uses Hydrogen Pipeline for Fuel Cell Cars from Toyota, Honda and Mercedes

Shell Daimler CaFCP Shell uses Hydrogen Pipeline for Fuel Cell Cars from Toyota, Honda and Mercedes

Shell Opens Third Hydrogen Station in Southern California

Shell announced the opening of a new demonstration hydrogen station in Torrance, California, the first in the US to have hydrogen delivered to the site directly from an existing underground pipeline. Excess hydrogen is typically available on the hydrogen pipelines used by oil refiners. Hydrogen is used to provide cleaner gasoline and diesel. Although hydrogen is most often reformed from natural gas, it is also available from the electrolysis of water wastewater treatment byproduct, and chemical plant byproduct.

Southern California has been the center for test deployment of hydrogen fuel cell cars. The West Coast has been the area of greatest use of hydrogen fuel cell buses, including the 20 hydrogen buses in Whistler, Canada that transported about 100,000 visitors during the last Winter Olympics.

Hydrogen fuel cell cars provide a way to give an electric car a range of up to 400 miles with hydrogen PEM fuel cells that supply added electricity to an electric drive system. GM successfully piloted 100 Equinox fuel cell vehicles during its Project Driveway. Toyota is planning to test 100 new fuel cell SUVs as it prepares for 2015 commercialization. Toyota FCHV Test Drive. 200 of the new Mercedes-Benz B-Call F-CELL are being put into use. Several automakers are targeting 2015 for the commercialization of fuel cell vehicles.

50,000 Commercial Hydrogen Cars by 2017 from Toyota, Honda, GM, Mercedes

Between 2008 and 2010, the fuel cell industry experienced a compound annual growth rate (CAGR) of 27%  according to the new Fuel Cells Annual Report 2011 from Pike Research. The California Fuel Cell Partnership forecasts over 50,000 hydrogen vehicles on California roads by 2017.

“Shell is pleased to be an active participant in the development of hydrogen-fuelled transportation, one of a small number of options to reduce road transport emissions in the longer-term,” said Julian Evison, General Manager of Operations for Shell Alternative Energies.  “Demonstration hydrogen filling stations allow us to evaluate a range of different technologies and learn valuable lessons about costs, consumer behavior, how to safely store hydrogen at different pressures and how to dispense it efficiently to different vehicles.’’

Initially, Shell expects 10 to 12 drivers to fill their tanks each day at the Torrance station’s two pumps, which provide hydrogen at both 350 bar (5,000 psi) and 700 bar (10,000 psi) pressure. Current fueling capacity is 48 kg. of hydrogen per day, equivalent to dispensing 48 gallons of gasoline. To exceed 200 mile range, most new fuel cell cars require 10,000 psi. Honda is the sole achiever of long-range at 5,000 psi with the Honda FCX Clarity. Only a handful of California stations support the high pressure fueling.

The close proximity of the hydrogen pipeline to TMS campus led Toyota to think beyond vehicles to consider additional ways to use hydrogen. In 2010, Toyota partnered with Ballard Power Systems to install a one-megawatt hydrogen fuel cell generator to offset peak electricity demand on campus. The fuel cell generator will be fed directly from the hydrogen pipeline through an existing tap on the TMS property. Pipeline hydrogen used on campus will be offset with the purchase of landfill generated renewable bio-gas.

The stand-alone station in Torrance offers only hydrogen and will be open 24 hours a day. Local fuel cell vehicle drivers will be trained to use the dispensers using personal access codes. The station is located on land provided by Toyota at the perimeter of its US headquarters.

Shell Delivers Hydrogen 24×7

“Vehicle demonstration  programs  and  demonstration  stations  like  the Torrance  station  are  a  critical  next  step in preparing the market for advanced  technology  vehicles,”  said Chris Hostetter, Toyota GVP of Product and Strategic Planning. This is the third demonstration station Shell has developed in the region. Shell opened the first integrated gasoline/hydrogen station in California in 2008 (in West L.A.) and a smaller sister station in Culver City in 2009. Shell is planning on building a hydrogen refueling site at one of its gas stations in Newport Beach later this year.

The station has been anticipated for years due to the potential of pipelined hydrogen to be less expensive than gasoline. It is now open after years of delay thanks to support from Toyota and Shell, who were not initial project partners. The much touted California Hydrogen Highway was never funded.

In addition to Shell Hydrogen and Toyota, project partners for the Torrance hydrogen demo station include Air Products, the US Department of Energy and the South Coast Air Quality Management District.

California’s Electric Transit Ride


Proterra Foothill chargingstation 300x195 California’s Electric Transit RideBy John Addison

People take hundreds of million electric rides each year in California. The big news is not the electric car drivers or those happily screaming on Disneyland rides; the larger story is network of connected electric rail, buses with cutting edge electric drive systems, and electric cars.

No LA and SF are not yet NY or Paris, but they are showing off a future of low-carbon and zero-emission transportation solutions. A couple of weeks ago, I went to the highly informative CAPCOA Climate Change Forum which included a couple of hundred leaders from California government, industry, and non-profit. Many of these people have decades of success in improving the health of our air, water, and environment. Now they are taking on the tough challenge of reducing the greenhouse gas emissions of a state that emits more than entire nations such as Spain, or Saudi Arabia, or hundreds of smaller countries. The number one GHG emitter in California is vehicles. Add the emissions of its oil refineries and you have the majority of greenhouse gas emissions in California.

Electric Light-Rail and Electric Trolley Buses

To the rescue are major public transportation operators who are electrifying their rail and bus fleets. These transit operators are unclogging the roads for those who really need cars, reducing air pollution, and reducing California’s carbon footprint.

In fact, I got to the Climate Change Forum on an electrically powered bus. I walked two blocks and boarded a trolley bus connected to special overhead power lines. The electricity is from hydropower. San Francisco has over 300 electric trolley buses, 40 cable cars that use under-street cables powered by electric-motors, an extensive electric light-rail system, and 460 diesel buses which are increasingly hybrid-electric. Like most cities, no one mode is best for the 235 million rides taken in SF each year; what’s best is a portfolio of solutions.

Electric light-rail is popular in many cities. Sleek cars on rail invite people to hop on and off. On their dedicated rail lines they are often the fastest way to get to a city’s major destinations. The rail cars often last 40 years compared to diesel and trolley buses which may only last 12.

Only a handful of transit operators still use the electric trolley buses with rubber-tired vehicles powered by electricity collected from fixed overhead wires. San Francisco and Seattle actively use trolley buses; cities like Boston and Dayton have a few. These buses, connected to overhead electric lines, fight through the car traffic, stop at every red light and stop sign, and require slower boarding than light rail. Transit operators no longer like electric trolley buses. They like the long life, speed, and ridership appeal of electric light-rail. Trolley buses cost more to buy and maintain than diesel hybrid-electrics. Unfortunately, adding a light-rail line can cost $20 million per mile; in a city like SF, $60 million.

A good combination for public transportation is light-rail corridors for the most heavily traveled segments that is well integrated with bus service, bicycling, walking, car sharing, electric car parking, and other modes.

Hydrogen Fuel Cells Extend Electric Range

My wife and I are planning to buy an electric car with 100 mile charge range. That more than meets our daily needs. If you’re driving a 40-foot bus full of people for 12 to 16 hours daily, however, you probably need more than batteries to extend the range to 300 to 400 miles. Hydrogen fuel cells compliment lithium batteries by freeing electrons from hydrogen to feed electric motors and batteries added electricity. Finish the long day with a 10 to 15 minute fill-up of hydrogen and your ready for another day.

AC Transit is currently servicing some Berkeley and Oakland routes with 4 hydrogen fuel cell buses with pure electric drive systems with 8 more on order for the Bay Area. These workhorses go for hours on end, even taking battery draining steep grades. These Van Hool buses use Siemens electric motors, EnerDel lithium batteries, and UTC fuel cells. AC Transit Director Jaimie Levin reports that their UTC fuel cells have worked so well, that they will redeploy several of the older fuel cells in the new buses, even though they have in excess of 7,000 hours of continuous operation on each system, without any failures or repairs, or loss of power.

The AC Transit fuel cell buses provided an inspiration for the Winter Olympics. At CAPCOA, I talked with Dr. Paul Scott, ISE Chief Scientists about the 20 hydrogen fuel cell buses that were used in Whistler for the Vancouver Winter Olympics. Dr. Scott told me that those BC Transit buses have successfully logged 500,000 km in a few months. I estimate that they provided over 100,000 rides during the Olympics. The Vancouver New Flyer buses use Ballard fuel cells, Siemens electric motors, and ISE drive systems and software.

LA Metro subway, light-rail, CNG buses, 40% electric, candidates 300kW pilot

Metro serves a vast geography that extends to the far reaches of the Los Angeles basin.I rode their system for a week, traveling from remote Pasadena to the LA Convention Center faster than I could drive.

At the heart of Metro is an electrically powered subway and light-rail system. From those main arteries, 2,500 CNG buses reach streets and neighborhoods that could never be covered with electric rail. In the long term, up to 40 percent of these CNG buses could be replaced with battery-electric buses for rush hour coverage. Although CNG buses have a range of at least 300 miles and can stay on road for 16 hours daily; battery electric buses are well suited for six to 8 hours of daily use during peak service periods. LA Metro plans to pilot test an electric bus with 300kW lithium battery pack, giving it 100-plua mile range appropriate for peak hours.

Foothill Transit Goes Electric

The Ecoliner silently glides along the streets in San Gabriel Valley giving passengers a break from the famous grid-lock traffic that extends east from Los Angeles for a hundred miles. The Ecoliner is Foothill Transit’s new pure battery-electric 35-foot bus built by Proterra, which is headquartered in Golden, Colorado. The Proterra BE35 is propelled with UQM electric motor using innovative lithium batteries that keep the big bus moving for 3 hours and are then quick-charged in ten minutes. The buses range is extended because the Proterra is aerodynamic made with lightweight composite material.

Proterra’s system allows a battery electric bus to pull into a transit center terminal or on-route stop and automatically connect to an overhead system that links the bus to a high capacity charger without driver involvement, even while passengers load and unload. The charging station technology includes advanced wireless controls that facilitate the docking process and eliminate any intervention from the driver. Proterra’s FastFill™ charge system is comprised of the software and hardware to rapidly charge the TerraVoltTM Energy Storage System from 0% to 92% energy charge efficiency in as little as 6 minutes.

Under California’s zero-emission bus program, 1,000 zero-emission (fuel supply to wheels) buses will be in service by 2020.

Commuter Rail and HSR

Metrolink rail and the Subway link some major Southern California light-rail and bus systems and BART and Caltrain link some Northern California systems. As a rider of these systems, I can testify that navigating through multiple systems is often slow and confusing. Using Google Maps on my smartphone makes the navigation possible.

In the future, California’s 25 major transit systems will be linked with an 800-mile high-speed rail network. Voters approved the system because it is a less expensive solution than widening highways and expanding airports. Because it depends on local and public-private partnership funding, as well as state and federal funding, it will be built in sections. First online are likely to be areas that are currently overwhelmed with passenger vehicles crawling on freeways that should be renamed “slowways.” Likely to be among the first in service are the Orange County – Los Angeles section.

Big Oil Fights Back

California is electrifying cars, transit, and high-speed rail at the same time that it expands its use of renewable energy including wind, solar, geothermal, hydro, agricultural waste, and even ocean power. The transition may reduce the state’s overwhelming dependency on petroleum for over 97 percent of all transportation. By comparison to other nations, California is the third largest market for petroleum. Only the USA as a whole and China use more. California uses more petroleum than Japan, Germany, India, and other nations.

Reducing the use of petroleum, of course, would cost oil companies billions. Texas oil companies are spending million to encourage Californians to vote “yes” for Proposition 23 this November. The proposition would require the State to abandon implementation of a comprehensive greenhouse-gas-reduction program that includes increased renewable energy and cleaner fuel requirements, and mandatory emission reporting and fee requirements for major polluters such as power plants and oil refineries, until suspension is lifted.”

Prop 23’s biggest backers, Valero and Tesoro, are responsible for 16.7% of California’s emissions, according to the California League of Conservation Voters. Prop 23 will allow California oil refineries to avoid paying over one billion dollars for carbon emissions, so they are attacking California Global Warming Solutions Act supported by the majority and California’s Republican Governor. Prop 23 is promoted as a jobs creation proposal, but a recent UC study reported that California’s successful efforts to become cleaner and more efficient have saved us money and grown the economy, resulting in the creation of 1.5 million jobs with a total payroll of over $45 billion. Opposition to Prop 23 fears that the law would open a Pandora’s Box of lawsuits against anything that reduces greenhouse gas emissions. CLCV Prop 23 Details

Currently California leads the nation with 25,000 electric cars on the road and thousands of new electric charge stations are scheduled for installation. Hundreds of millions of rides are taken on electrified light-rail and commuter rail. Zero emission buses are on the roads. Renewable energy is growing by gigawatts. In a few weeks, we will learn if California moves ahead with efficient and electrified transportation, or if its initiatives are derailed.

H2O to H2 w/o C

by Richard T. Stuebi

Although much of the ink these days about innovative vehicles relates to plug-in hybrids, work continues to explore the potential for hydrogen-based fuel cells to play a key role in the transportation sector — particularly in light of the recent decision by Congress to reauthorize funding for hydrogen autos.

Admittedly, as hydrogen critics and skeptics are quick to point out, the vision for personal automobiles running on hydrogen is very long-term and thus quite murky due to a number of factors, perhaps most notably the lack of a ubiquitous hydrogen refueling infrastructure. The challenges facing hydrogen vehicles are real, but for fleet vehicles with limited service radii, the lack of refueling infrastructure is less of a problem, as one dedicated refueling system can fit the bill. As a result, fleet vehicles – especially inner-city buses – are the primary focus of current testing activities for hydrogen fuel cells in transportation.

Of course, to achieve the full environmental benefits of the hydrogen economy vision the hydrogen will need to be derived by electrolyzing water via renewably-sourced electricity (e.g., from the sun or the wind) to power the electrolyzer.

Although conceptually straightforward, renewably powering electrolyzers turns out to be a non-trivial challenge. This is mainly because solar and wind electricity voltage and current are highly variable, and the electronics of the control systems in electrolyzers tend not to like fluctuations in input power.

To address this challenge, a team here in Cleveland is spearheading a project to install a solar/wind-powered electrolyzer to generate hydrogen from Lake Erie water, with the hydrogen to supply a refueling station that will power a fuel cell bus serving Cleveland-area riders.

With seed funding from the Cleveland Foundation, the project is being managed by the Ohio Aerospace Institute, and the team includes NASA’s Glenn Research Center in Cleveland, Cleveland’s Regional Transit Authority (RTA), the Great Lakes Science Center in Cleveland, Cleveland-based Parker Hannifin (NYSE: PH), and United Technologies (NYSE: UTX). The Great Lakes Science Center is already home to a 225 kw wind turbine and a 32 kw photovoltaics installation, and will be home to the electrolyzer-fed fueling station. RTA will run the fuel cell bus on the recently-renovated Euclid Corridor. United Technologies will be providing the fuel cell bus, and Parker Hannifin is providing key control systems for the fueling station. If all goes well – meaning, primarily, raising an additional $1 million or so to fully complete the project – the hydrogen fueling station and fuel cell bus will operate on a demonstration basis in a couple of years.

Of particular note, NASA is providing the intellectual expertise in developing the algorithms for controlling the electrolyzer to match the variable input power from the solar and wind generating systems. This expertise comes from considerable mission experience, in which photovoltaics systems generate electricity from the sun to power the spacecraft, and energy storage and charge control systems must accommodate power supply interruptions as planetary bodies transit in front of the sun.

To the team’s knowledge, because managing the intermittency of electricity supply in electrolyzer operation is non-trivial, there is only very limited experience with renewable electrolysis for hydrogen production, and virtually none involving more than a little bit of hydrogen production daily. So, this Cleveland project could be an important step along the path to developing truly carbon-free hydrogen-fueled transportation solutions.

As the Fellow for Energy and Environmental Advancement at the Cleveland Foundation, Richard T. Stuebi is on loan to NorTech as a founding Principal in its advanced energy initiative. He is also a Managing Director at Early Stage Partners, and is the founder of NextWave Energy.

Hydrogen Goes Public in Southern California

By John Addison (6/26/08). On April 20, 2004, after 40 years of fighting it was all smiles between auto executives from Detroit and the regulators of California’s health and emissions. That day a new governor signed the historic California Hydrogen Highways Executive Order. California would be energy independent, instead of consuming more oil than all nations except the USA and China. You read that right. 38 million Californians uses more oil each year than all of Japan, all of Germany, and more than over one billion people in India.

Terry Tamminen, then Secretary California Environmental Protection Agency, now an energy and environmental consultant to governments and author of Lives per Gallon, walked to the podium and delivered a powerful address:

“More than six generations of Californians have relied upon petroleum to power everything from our industries to trips in the family car. But the basic motor vehicle has changed little in over a century, while air pollution sends one in seven children in this region to school every day carrying asthma inhalers. The health of our businesses is also threatened by rapidly rising fuel prices – – with no end in sight.

We cannot build a 21st Century economy on 19th century technology. Four decades ago, President Kennedy’s bold leadership sent Americans to the moon using hydrogen fuel and fuel cells. Today we can certainly harness that same technology to take us to work, to school, and on a family vacation.”

Terry Tamminen now drives a Honda FCX hydrogen fuel cell vehicle. The car is an electric vehicle that uses an electric motor, not an engine, and captures braking energy into advanced batteries. The car also has a fuel cell which takes hydrogen from the onboard storage tank and makes continuous electricity. From his home in Santa Monica, Terry can drive almost 200 miles then pull into a hydrogen station and refuel. Terry leases the car from Honda for $500 per month. The lease includes all maintenance and collision insurance. In the future, he may lease Honda’s latest fuel cell vehicle, the FCX Clarity for $600 per month, and get a range of almost 300 miles.

Unlike most places in the United States, Terry can find over ten hydrogen stations in the nearby Los Angeles area for a fill-up. Conveniently nearby is a new Shell gas station that also includes a hydrogen pump. The hydrogen is made from H2O at the station. Yes, water is split into hydrogen and oxygen. Customers like Terry can fuel their hydrogen vehicles in five minutes then drive off, an advantage over battery electric vehicles that are typically charged overnight.

With his zero-emission vehicle, Terry gets convenience while staying true to his environmental values.

This Thursday, June 26, Shell opened a new public hydrogen fueling station, conveniently located near two of the world’s busiest freeways – the 405 and the 10. The station looks like any other Shell Station.

You can also stop and fill-up with gasoline, buy snacks, use the restroom, even inflate your tires for better mileage. “California is leading the way with clean fuels,” said Graeme Sweeney, Executive Vice President for Shell Future Fuels and CO2 at the official opening of the station.

The electrolyzer will make enough hydrogen for about seven cars per day with 40kg of storage. Hydrogenics provided the integrated hydrogen fueling station, including electrolyzer, compressor, storage, and dispensing systems. In order to meet the demanding space requirements of the fueling station, Hydrogenics implemented a canopy system where all the components are mounted on the roof of the station canopy, minimizing the footprint of the hydrogen station.The electrolyzer is powered with Green Energy from the LA Department of Water and Power. By paying an extra 3 cents per kilowatt hour, Shell uses renewable energy generated by wind, solar, bioenergy, hydro and geothermal.

The station’s added capacity will be welcome by California’s fleet users of over 100 hydrogen vehicles who need refills on some of their trips. These fleet users include the nearby City of Los Angeles, City of Santa Monica, and UCLA. Most of California’s 24 hydrogen stations serve only their own fleets; some offer courtesy fills to other fleets. Shell competitor, BP, also offers a public hydrogen station at LA Airport, but this is not a full service station with gasoline filling.

The new Shell hydrogen station is also near the rich and famous who are starting to drive hydrogen vehicles. The station is easily accessed from Beverly Hills, Bel Air, Brentwood, and Santa Monica. Early customers of the new Honda FCX Clarity include actress Jamie Lee Curtis and filmmaker husband Christopher Guest, actress Laura Harris, and film producer Ron Yerxa.

Over the next three years, Honda will be leasing 200 FCX Clarity four-door sedans. In California, a three-year lease will run $600 a month, which includes maintenance and collision coverage. Although Shell will be selling hydrogen for about double the gasoline equivalent, the new Honda is speced at 68 miles per gallon equivalent (your mileage may vary), so drivers replacing gasoline vehicles that get less than 34 miles per gallon are likely to be money ahead in fuel costs.

The new FCX Clarity demonstrates the continuous improvement that Honda has made since its early fuel cell vehicles and electric vehicles with limited range: an advanced new four door, four-passenger sedan design, a greater than 30 percent increase in driving range to 280 miles, a 20+ percent increase in fuel economy, and a 40 percent smaller and 50 percent lighter new lithium-ion battery pack. Its fuel efficiency is three times that of a modern gasoline-powered automobile, such as the Accord.

American Honda has been recognized four consecutive times as America’s “greenest automaker” by the Union of Concerned Scientists, most recently in 2007, and has maintained the highest automobile fleet-average fuel efficiency (lowest fleet-average CO2 emissions) of any U.S. automaker over the past -years. In addition to hydrogen fuel cell vehicles, Honda is expanding its offerings of hybrid vehicles. My mother, who has carefully watched every dollar since her childhood in the Great Depression, loves the fuel economy of her Honda Civic Hybrid. The company is rumored to be planning a new hybrid for next year, priced well under $20,000 to reach a broader market.

Although Honda can deliver 280 mile range with hydrogen at the lower pressure 5,000 psi (35 mPa) delivered at this new hydrogen station, and at most stations, most other auto makers need double the pressure of 10,000 psi (70 mPa) to get adequate range.

General Motors is putting 100 of its larger crossover SUV Hydrogen Equinox on the road with fleets and individuals. For example, in Burbank the Walt Disney Company is using ten of the GM Equinoxes in a 30 month trial. They fill at a private 10,000 psi (70 mPa) station in Burbank to achieve a 160 mile range. Anyone filling an Equinox at the new Shell station is likely to only get an 80 mile range at the lower pressure. Burbank and Irvine have the only 10,000 psi (70 mPa) stations in California. GM’s Project Driveway

GM is placing a bigger bet on its Chevy Volt, the sleek 4-door sedan plug-in hybrid targeted to start selling in 2010. The vehicle will travel 40 miles on an electric charge, then use a small gasoline engine to extend its range. GM will eventually offer a family of vehicles using the Volt’s E-Flex architecture. One E-Flex concept car that GM has demonstrated, uses a fuel cell not a gasoline engine to give extended range. Plug-in hydrogen vehicles may be in GM’s future.

Both Honda and GM will face competition from Daimler which has over 100 hydrogen vehicles in use by customers. 60 are Mercedes F-Cell passenger vehicles, 3 are Sprinter delivery vans used by UPS and others, and close to 40 buses that transport thousands globally on a daily basis.

By using green energy to power the electrolysis, Shell provides a zero emission source-to-wheels solution. This overcomes the problem at half of California’s hydrogen stations where hydrogen is remotely reformed from natural gas, then truck transported, providing modest lifecycle GHG benefits when compared with the most fuel efficient gasoline hybrids. Newer stations, however, use approaches that dramatically reduce emissions such as pipelining waste hydrogen, onsite reformation, and electrolysis using renewable energy.

Over the next twenty years, hydrogen will neither be the sole solution to energy security and global warming, nor will it fail. There will not be a Hydrogen Economy. Nor, as some critics claim will there never be hydrogen vehicles.

Most likely, hydrogen will follow the success of natural gas vehicles. There are about five million natural gas vehicles in operation globally. Over 90% of the natural gas used in the USA is from North America. Transportation use of natural gas has doubled in only five years. Natural gas vehicles are popular in fleets that carry lots of people: buses, shuttles, and taxis. Los Angeles Metro uses 2,400 natural gas buses to transport millions. Most of the City of Santa Monica’s 595 vehicles run on natural gas, be they buses, trash trucks, or heavy vehicles.

Natural gas is primarily hydrogen. The molecule is four hydrogen atoms and one carbon. Steam reformation makes hydrogen from CH4 and H2O. Hydrogen is used in fuel cell electric vehicles with far better fuel economy than the natural gas engine vehicles that they replace. For example, at Sunline Transit, their hydrogen fuel cell bus is achieving 2.5 times the fuel economy of a similar CNG bus on the same route. Specifically 7.37GGE to the CNG vehicle’s 2.95GGE. Sunline has a new fuel cell bus on order with even great expected gains. NREL Report

Some major auto makers and energy providers calculate that it will only take about 40 public hydrogen stations and reasonably priced vehicles to the hydrogen dilemma of which comes first, vehicles or stations. By targeted the area from Burbank to Irvine, in Southern California, both are happening.

Public education will also be critical for hydrogen to be embraced by the public. In addition to the new hydrogen pump at the Santa Monica Boulevard Station, Shell has converted an unused service bay into a visitor center to help educate drivers about the use of hydrogen and fuel cell vehicles.

From London to Los Angeles, from Shanghai to Santa Monica, cities are planning for a zero-emission future. To encourage the transition, cities like London have imposed pricey congestion fees, but exempted zero-emission vehicles such as battery-electric and hydrogen fuel cell. In response, auto makers have accelerated their electric vehicle development and providers like Shell are planning on hydrogen stations for these cities.

Southern California will have cleaner air and less gasoline usage for several reasons including: electric rail, more fuel efficient vehicles, plug-in hybrids and electric cars. In an upcoming article, I will also document the growing success of public transportation in Southern California. The advances being made by major providers such as Honda, GM, and Shell are part of the solution.

Copyright © 2008. John Addison. Portions of this article may be included in John Addison’s upcoming book. Permission to reproduce if this copyright notice is included.

HMC, GM, RDSA, DAI, BP

Hydrogen Heaven

by Cristina Foung

My favorite green product of the week: the Honda FCX Clarity Hydrogen Fuel Cell Vehicle

What is it?
The Honda FCX Clarity is a hydrogen fuel cell vehicle. It takes hydrogen and oxygen to generate the electricity needed to power the vehicle. It has a range of about 270 miles and a top speed of 100 MPH.

Why is it better?
As you may have noticed I’m rather fond of clean, interesting vehicles. Of course, as they say in the TV spot, wouldn’t it be great if you could replace something harmful with water? Yes, indeed. That would be great!

But which of these is unlike the other: the Tesla Roadster, the cityZENN, the Vectrix motorcycle, and the Honda FCX Clarity?

You guessed it. It’s the FCX Clarity. Unlike the first three, the Honda runs itself on electricity generated from hydrogen, and emits only water vapor and heat into the air. And as much as I hear hydrogen isn’t worth the hype, the FCX Clarity is a pretty cool zero-emissions vehicle (and will be certified by CARB).

Where can you find it?
If you live in Southern California, you’re in luck. A limited number of FCX Clarity vehicles are going to be leased in Torrance, Santa Monica and Irvine come summer. The lease amount will be around $600 per month for three years and it includes maintenance.

If you don’t live in Southern California, you’ll have to wait a bit longer. According to the Honda website, they’ll roll out vehicles as the hydrogen infrastructure develops (assuming it does ever develop).

Besides her green products column on Cleantech Blog, Cristina is a passionate advocate for green living at the Green Home Huddle at Huddler.com, which focuses on electric cars, energy efficient appliances, and other green products.