Cleantech and the Future of GM

Jon Lauckner, President GM Ventures, said that GM now has a straightforward vision, “Design, build and sell the world’s best vehicles.” I took notes as he gave his keynote speech at the Clean Tech Investors Conference and asked him about GM’s investment priorities. To achieve GM’s vision, focus is now placed on four strategies: (1) a culture that is more aggressive and flexible, (2) customer focus, (3) Team GM, and (4) technology.

Mr. Lauckner is focused on investing in innovative and early stage companies. He has been busy since GM Ventures was established last June and he was promoted from head of GM global product planning. GM Ventures has invested in Bright Automotive, which has designed an advanced plug-in hybrid delivery van with much greater cargo space than Ford’s Transit Connect Electric. GM has invested in two advanced next generation biofuel corporations – Mascoma and Coskata. Given the success of the Amyris IPO, these investments could should a high return for GM.

GM has the potential to drive down lithium battery cost and weight with its strategic partner LG Chem, supplier for the Volt. The two corporations recently licensed cathode technology from Argonne National Lab that can lead to better energy density and make future cars like the Chevrolet Volt even more cost effective.

GM is also looking beyond today’s lithium technology. GM Ventures has invested in SAKTI3, which has developed a rechargeable solid-state battery with the potential to lower the cost of manufacturing batteries.

All of these innovators are creating offerings that could accelerate GM offering a wider range of vehicles, lower the carbon footprint of GM vehicles, and make electric cars less expensive than gasoline powered in this decade. So far, all of these innovators are U.S. based and already creating hundreds of new jobs. GM is open to investing globally and often partners with venture capitalists such as Khosla Ventures, corporate private equity such as Itochu Technology Ventures, and public economic development such as the Michigan Economic Development Corporation.

The technology will not necessarily become a GM offering, but that is a potential value-added in partnering with GM Ventures. For example, Powermat is not only receiving a $5 million investment from GM Ventures, Powermat will be offered in many 2012 GM cars. Powermat solves that problem of trying to keep many mobile electronic devices charged. Forget using the cigarette lighter. Powermat’s technology allows electronic devices – smart phones, MP3 players and gaming devices – to be charged inductively by just placing them on the Powermat.

What will be the next General Motors investment? Speaking to over 400 executives at the Clean-Tech Investor Summit,  co-produced by International Business Forum and Clean Edge with CleantechBlog as a media sponsor, Jon Lauckner said that GM Ventures is looking for promising innovation in these areas:

Automotive Cleantech

  • EV
  • Fuel cell
  • Charging
  • Emission controls
  • Motors
  • Smart grid
  • Energy efficiency for vehicles
  • Biofuels


  • Vehicle HMI
  • Voice recognition technologies
  • In-vehicle advertising
  • Cloud services
  • Personal device integration

Smart Materials

  • Cost
  • Mass
  • Lightweight materials
  • Eco-friendly materials

Automotive-Related Technologies

  • Innovations for unmet consumer needs
  • Advanced sensors for autonomous driving
  • Safety features

Value Chain / Business Model

  • New automotive business models
  • Leverage GM technology and assets for upstream and downstream revenue

I asked Jon Lauckner about alternatives to rare earth elements. Currently, the motors in electric cars and hybrids are permanent magnet motors. To improve weight, efficiency and heat resistance, rare earth elements such as neodymium and dysprosium are used in these permanent magnets. Such rare earths are currently mined in China, but the big money is not in the mining, it is in the final products. China is restricting rare earth exports, and giving priority to using rare earths in its own manufacturing of turbines and motors for products ranging from military systems to high-speed rail to electric cars.

Toyota Motors is developing inductive car motors that do not use rare earths. Although Lauckner was carefully non-committal about whether GM is also working on inductive automotive electric motors, he did say that he would be “very interested” in such motors requiring no rare earths. Smart materials, nanotechnology, and advanced powertrain components are all strategic to the future of GM.

In one decade, transportation will be very different from today. With GM Ventures, General Motors is positioned to invest, integrate, and deliver to global customers better cars and services that include innovations in cleantech, infotainment, materials, autonomous driving, and new business models.

Will your Utility be ready for your Networked EV?

Yes, your electric utility will be ready to charge your new electric car if you live in the right city.  Your odds improve if you live in one of 18 cities, own a house that uses air conditioning, has a garage, and have new underground power lines. If you live in an apartment with no garage, especially in a non-priority city, then get ready to be a brave pioneer.

I recently invested a day listening, interviewing, and networking with forward thinking utility executives and some of the smartest people in the smart grid business at GTM Research and Greentech Media’s Networked EV conference.

Nissan has started shipping the LEAF. Chevrolet has handed car keys to early Volt customers. Forty thousand new electric vehicles will be on the U.S. highways by the end of 2011. Charging these vehicles could be the equivalent of powering another 40,000 houses. Since the sub-prime mortgage crisis has left that many houses empty, you would think that charging 40,000 cars should raise no concerns. Charging one million by 2015, however, is both a challenge and an opportunity.

Utility executives are raising concerns and conducting PR campaigns. They want to make sure that they are ready, that no neighborhood blackouts happen, and that they make money charging these electric cars. Early Prius sales were concentrated to certain communities; it will be the same story with electric cars. For example, universities and tech centers will have a concentration of EVs that will lead utilities to install smart meters, add smart grid software, and add $9,000 transformers. In many cases, public utility commissions must support these upgrades so that utilities make money charging EVs.

Even morning charging at work or public spots is fine with most utilities. Peak demand is often in the afternoon and early evening. It greatly helps that all electric cars, from LEAFs to Volts, use smart charging. Charging does not start when you plug-in. It starts based on your preferences, such as charging at lower night rates. With a couple of clicks on your smartphone app, night preferences can be overridden with your request to immediately charge.

Temporary TOU tiered pricing will be tested in cities such as San Diego to see if people are encouraged to charge off-peak. Some lucky test households will pay super off-peak rates that are only 1/6 of peak rates when charging their new plug-ins in San Diego. Money incentives and the simplicity of smart charging should lead to most charging being done off-peak.

Eighteen cities from San Diego to Seattle, from New York to Raleigh, have been preparing for the deliver of thousands of electric cars by installing 15,000 public charging stations as part of a DOE Ecotality project. Independently, thousands of home charging stations are being installed by EV drivers.

Greg Haddow with SDG&E in San Diego described how they have evaluated best locations for public charging considering geographies of early buyer interested as reported by their customers and automakers, employment centers, and strategic areas of public use. Starting this December, ten stations per week will be installed, with quantities increasing until 2,500 are installed.

Electric vehicle interest has been strong in areas of urban density, so SDG&E has engaged with many apartment and condo complexes. No two multi-unit dwellings have been the same in parking structures, renter/owner allocation of spaces, meters, panels, and power currently available to the complex. Some EV enthusiasts have been surprised to learn that their rental agreements prohibit EVs or use of parking power. Condo CCRs vary.

Electric utilities have already successfully handled bigger challenges than charging EVs.  They have added underground lines, new transformers, and distribution to handle new real estate development including hundreds of McMansions, each demanding more juice than even a Tesla. Utilities are upgrading grids and infrastructure to support megawatts of distributed solar. Electric utilities take on new industrial parks with hours of surges in demand for electricity.

PG&E with 5.1 million electricity customers was ranked the greenest utility in U.S. by Newsweek 2009 and 2010. It has developed three scenarios to support 220,000 to 850,000 plug-in vehicles by 2020 in its service area. Kevin Dasso, Senior Director of  for PG&E, contrasted two neighborhoods where there is a concentration of those ordering Nissan LEAFs and Chevrolet Volts – Silicon Valley and Berkeley. New developments in Silicon Valley will be easier. The distribution infrastructure is already there to support larger air conditioned homes, newer underground wiring, and newer transformers.  A plug-in hybrid will not equal the demand of one large home. Berkeley homes are supported with older infrastructure, less likely to have air conditioning. One battery-electric car could create more demand than one home.

Yes, your electric utility will be ready for your new EV. If you live in an older neighborhood with energy-efficient homes, some planning and upgrading will be needed. The impact will be less than adding new developments, new industrial parks, and even high-growth of solar power. Most charging will be done off-peak, allowing utilities to run their most efficient power plants 24/7 and make better use of nighttime wind-power. The key to off-peak charging will be the incentives of TOU pricing and the fact that your networked EV is smart enough to charge when rates are lowest.

For a nation that is 95 percent dependent on petroleum for transportation, the chance to use home grown energy should be a blessing, especially in 70 percent efficient electric drive systems, instead of 15 percent efficient gasoline engine drive systems. Done right, your electric utility will make money. Most utility generation assets are underutilized at night when home charging is ideal; generation is underutilized in the morning when workplace charging ideally occurs.

Coulomb Technologies Smart-Charging for Ford Electric Vehicles

By John Addison – June 3, 2010

Ford is promoting smart charging as it now takes orders for the Ford Transit Connect, next year for the 2011 Ford Focus EV, and in 2012 the Ford Plug-in Hybrid. Ford is partnering with Coulomb Technologies to provide nearly 5,000 free wall-installed charging stations for some of the automaker’s first electric car and electric delivery van customers.

Under the Ford Blue Oval ChargePoint Program, fleets and residents in nine designated markets could receive a free ChargePoint® Networked Charging Station with the purchase of a Ford Transit Connect Electric vehicle. The nine markets designated by Coulomb Technologies include Austin, Detroit, Los Angeles, New York, Orlando, Sacramento, the San Jose/San Francisco Bay Area, Redmond, Wash., and Washington D.C. The installation of ChargePoint charging stations will begin immediately.

Ford plans to introduce five new electrified vehicles in North America by 2012, providing a range of products to meet a variety of customer needs. These include:

• A Transit Connect Electric small commercial van. Test Drive Report
• A Ford Focus Electric passenger car debuting in 2011. Test Drive Report
• Two next-generation lithium-ion battery hybrid-electric vehicles and a plug-in hybrid by 2012

If 5,000 Transit Connect Electrics are sold in the target cities prior to Focus EV sales, then charging units may all go to those customers. This will help accelerate early adoption of electric vans in fleets such as utilities, universities, goods delivery, and contractors.

New USA Jobs for Plug-in Cars and Advanced Batteries

Ford’s increased use of lithium-ion batteries is also increasing jobs in the United States. Ford will make its own battery packs in Michigan, using Focus EV cells from nearby Compact Power, an LG Chem company. The plug-in hybrid cells will be made in Wisconsin by Johnson-Controls Saft. The U.S. made new lithium-ion batteries will be used instead of the currently Mexican made nickel metal hydride batteries. Over 6,000 new jobs are coming to Michigan just for advanced batteries. “Michigan will be the place where the electric vehicle and battery-powered vehicle will be researched, developed, produced, manufactured and assembled,” said Gov. Jennifer Granholm.

The Ford Blue Oval ChargePoint Program is part of Coulomb Technologies’ $37 million ChargePoint America charging station infrastructure project made possible by a grant funded by the American Recovery and Reinvestment Act through the Transportation Electrification Initiative administered by the Department of Energy.

Coulomb Technologies Leads in Smart Charging Build-Out

Coulomb Technologies is a fast-growing venture capital backed firm headquartered in California. Coulomb’s ChargePoint® Network, is open to all plug-in electric vehicle drivers and provides authentication, management and real-time control for the networked electric vehicle charging stations. The network of electric vehicle charging stations is accessible to all plug-in drivers by making a toll-free call to the 24/7 number on each charging station, or signing up for a ChargePoint Network monthly access plan and obtaining a ChargePass™ smart card. Other future payment options include using any smart (RFID) credit/debit card to authorize a session or using a standard credit or debit card at a remote payment station (RPS) to pay for charging sessions. To locate available charging stations, visit and click “Find Stations.”

As electric cars start to ship with the new J1772 smart charging capability, Coulomb has taken the lead in installing a smart charging infrastructure with over 700 networked charging stations worldwide shipped to more than 130 customers in 2009. The ChargePoint Network provides multiple web-based portals for Hosts, Fleet managers, Drivers, and Utilities, and ChargePoint Networked Charging Stations ranging in capability from 120 Volt to 240 Volt AC charging and up to 500 Volt DC charging.

Smart charging will allow customers to save money by charging off-peak when rates are low. Major utilities also plan to inform smart charging station customers that excess renewable energy is available if that is their charging preference. Electric Utilities Facilitate Smart Grid
ChargePoint America will offer home and public charging stations to individuals and businesses. Businesses interested in applying for free public charging stations or consumers exploring an electric vehicle purchase can visit for more information.

Three automakers have committed to deliver electric vehicles in designated US regions. The Chevrolet Volt, the Ford Transit Connect Electric and Ford Focus Electric through the “Ford Blue Oval ChargePoint Program”, and the smart fortwo electric drive will be introduced along with this program. ChargePoint America plans to provide 4,600 public and private ChargePoint Networked Charging Stations by October 2011.

Clean Fleet Reports about Electric Cars

Top 10 Electric Car Makers for 2010 & 2011

By John Addison, Publisher of the Clean Fleet Report and conference speaker.

Chrysler to Make Plug-in SUV, Minivan and New EVs

By John Addison (9/24/08). Chrysler builds on the success of its 38,000 GEM EVs that are currently on the road in the U.S. with new battery-electric vehicle and plug-in hybrid announcements. Any time I visit university towns, corporate and government fleets, I see these GEM electric vehicles being used for practical transportation and hauling. Often, they are powered by solar roofs and carports.

The new GEM Peapod will be available for purchase in 2009, with more models to come. Eco-friendliness gets a fresh face with the GEM Peapod. The GEM Peapod brings beautiful aerodynamic style to a gas-free, emission-free vehicle. This light electric vehicle has a maximum speed of 25 miles per hour and a range of 30 miles before requiring at least 6 hours for an adequate recharge of its lead-acid batteries. Peapod Specs

Three freeway-speed vehicle electric vehicle announcements were also made this September 24 by Chrysler’s ENVI – Dodge EV, Jeep EV and Chrysler EV. The development of Chrysler’s Electric Vehicles and Range-extended Electric Vehicles is led by ENVI – representing the first four letters of “environmental” – the Company’s in-house organization that was formed to focus on electric-drive production vehicles and related advanced technologies. Discussions are taking place with several lithium battery suppliers including A123.

The Jeep EV is a plug-in hybrid Jeep Wrangler SUV with an estimated 40 mile range in electric mode, before a small gasoline engine is engaged. The vehicle may give record fuel efficiency for customers that want SUVs, from families hauling kids and trailers to fleets. The Jeep EV will compete with the plug-in hybrid offering from Saturn VEU.

The Jeep EV uses an electric motor, an advanced lithium-ion battery system, and a small gasoline engine with an integrated electric generator to produce additional energy to power the electric-drive system when needed. The 200 kW (268 horsepower) electric motor generates 400 N•m (295 lb.-ft.) of torque. With approximately eight gallons of gasoline, the Jeep EV has a range of 400 miles, including 40 miles of zero fuel-consumption, zero-emissions, all-electric operation.

Minivan drivers have been longing for better mileage as the shuttle vans full of people and stuff. The new Chrysler Town and Country will use the same plug-in hybrid drive system as the Jeep EV.

Chrysler’s announcement should increase pressure on Toyota to announce a hybrid mini-van and for Honda to announce a more fuel efficient van using diesel.

For sports car enthusiasts, Tesla has new competition in the form of the Dodge EV, a hot two-seater with a body designed by Lotus. This battery-electric will have a range of 150 to 200 miles between charges – more miles, when driven with a feather touch; much less, with a lead-foot.

The electric-drive system consists of three primary components: a 200 kW (268 horsepower) electric motor, an advanced lithium-ion battery and an integrated power controller. The 200 kW electric-drive motor generates 650 N•m (480 lb.-ft.) of torque. The instant high torque of the electric-drive motor delivers outstanding performance, accelerating the Dodge EV to 60 mph in less than five seconds. The Dodge EV has a top speed of more than 120 mph.

Chrysler plans to have 100 of the new ENVI vehicles in fleets in 2009 and to start taking production consumer orders in 2010.

Three weeks ago, I had the chance to talk with Chrysler President Jim Press, an executive who is famous for staying in close touch with customer and dealer interests and issues. He knows how to make hybrid vehicles a success. He was President and COO of Toyota USA when Toyota made the Prius a best seller and when Toyota grew to global market leadership. After 37 years at Toyota, Mr. Press could have coasted into retirement. Instead he joined Chrysler as President and Vice Chairman, where he will be integral to building a new company.

In his travels, he notes a strong interest in EVs among younger people – he refers to this market segment as Millennials. Should Chrysler win with the new generation, they could be customers for decades. Look for Chrysler to extend the development of advanced, production-intent electric vehicles, and that it will apply electric-drive technology to its front-wheel-drive, rear-wheel-drive and body-on-frame four-wheel-drive platforms in the next several years.

Jim Press, when talking recently with the Western Automotive Journalist, stated, “We need a new business model based on one word – Reality.” The new management team inherited a 4 million car per year overhead with sales falling to one million per year in the new era of high gasoline prices. Mr. Press is cutting unprofitable sales such as rental car fleets. He is focusing on a future of vehicles that give customers a visceral emotional connection with their car, while using electric drive systems to address fuel economy and environmental concerns.

Jim Press continues to move aggressively. After talking into the evening with California journalists, he took off for a red-eye flight back to Detroit. He wants to see Chrysler moving at the speed of their new vehicles.

John Addison publishes the Clean Fleet Report

Plug-in Drivers Get Charged

By John Addison (7/31/08). In 1971, a bright engineer, Dr. Andy Frank, was looking to the future. He knew that oil production had peaked in the U.S. and that cheap oil would later peak globally. He calculated how to get 100 miles per gallon, and then he built a hybrid-electric car.

A few years later there was a crisis in the Mideast. Oil tankers stopped moving through the Suez Canal. There were hour gas lines in the United States with engines fuming emissions and drivers fuming with anger. Gasoline was rationed. The crisis intensified Andy Frank’s commitment to build great vehicles with outstanding fuel economy. He has been on that mission ever since.

Andy Frank took me for a ride in a big GM Equinox SUV that got double the fuel economy of a conventional SUV because he converted it to a plug-in hybrid. The ride was the same as in any other SUV except it was more quiet. Fuel economy doubled because much of the time the vehicle ran on electricity with the engine off.

This vehicle was typical of many projects. The large engine was removed. An engine less-than half its size was put in its place. His team saved hundreds of extra pounds by replacing the standard GM transmission with a smaller and lighter continuously variable transmission. Even with an added electric motor and lithium batteries, the vehicle weighed less than a standard Equinox. The air conditioning and other accessories ran electrically, instead of placing mechanical demands on a large engine. Converted to be powered electrically, the air conditioning could run with the engine off.

Andy Frank is the father of plug-in hybrids. His students at U. C. Davis have gone on to be some of the brightest minds in automotive design and transportation management. Over the past 15 years, he and his students have built over ten different plug-in hybrids. They have ranged from sport cars to full-sized SUVs. Typically these PHEV can go over 40 miles (64km) in electric-only range and weigh no more than their standard counterparts. U. C. Davis Team Fate Vehicles

The idea of plugging-in is not new. We are in the habit of recharging our mobile phone every night. Soon, we may also be recharging our vehicle every night. Plug-in hybrid vehicles (PHEVs) look and drive like regular hybrids. They have a large battery pack that captures braking and engine-generated energy. Like hybrids they have computer chips that decide when to run only the electric motor, using no gas, when to run the gasoline engine, and when to run both. Many plug-in hybrids are programmed to run on only electricity for ten to forty miles before engaging the engine. Heavy duty vehicles, and eventually some passenger cars, will use more efficient diesel engines, not gasoline.

Andy Frank was all smiles as a crowd of 600 applauded at the Plug-in 2008 Conference in San Jose, California, last week. Many in the crowd now drive plug-in hybrids as part of their fleet demonstration programs. A number in the crowd had converted their personal Toyota Priuses or Ford Escape Hybrids. This was a crowd of plug-in converts.

Some visionary fleet managers have accelerated the development of plug-in hybrids. Rather than wait years for major vehicle manufacturers to offer plug-ins, these fleets have contracted for conversions then used their own maintenance teams to keep the experimental vehicles running. For example, Google is getting 93 miles per gallon (mpg) with its converted plug-in Priuses, over double the 48 mpg of its normal Priuses. Google uses solar power to charge the cars. Google’s

In Southern California, 24 million people live in an area where the mountains trap smog and damage people’s lungs. South Coast Air Quality Management District plans to reduce emissions by contracting the conversion to plug-in of 10 Priuses, 20 Ford Escape Hybrids, and several Daimler Sprinter Vans. The vehicles are being put into a variety of fleets with hopes that “a thousand flowers will bloom.”

Fleets are piloting plug-in conversions around the country. These fleets include New York City, the National Renewable Energy Lab in Colorado, King and Chelan County Counties in Washington, Minneapolis and the City of Santa Monica.

Electric utilities have started a variety of plug-in hybrid pilot projects involving everything from cars to large trouble trucks. These utilities include Southern California Edison, Austin Energy, Duke Energy, Wisconsin Power, and Pacific Gas and Electric to name a few. At a time when there are desperate discussions about being more dependent on oil, including taking ten years to get oil from environmentally sensitive areas, electric utilities are coming to the rescue by increasingly powering our vehicles.

Because some plug-ins will go up to 40 miles in electric mode at slower speeds, it is possible to get over 100 miles per gallon. With short trips in cold weather, little improvement might be seen. Driving on freeways without recharging will not help. However, for most driving cycles, plug-ins can dramatically reduce the need for expensive gasoline fill-ups.

You can get over 100 miles per gallon (mpg) by either adding a kit to an existing hybrid, or by waiting until late 2010 to order a new car from the car makers that will be discussed in next week’s article. Due to probable wait lists, it may be three years before individuals can get delivery of plug-ins from car makers. If you are now getting only 20 mpg, getting 100 mpg would cut your gasoline bill 80%. Over the next few years, you will have a growing number of choices of plug-in hybrids.

Plug-In Supply unveiled its $4,995 Conversion Kit at the Plug-in 2008 Conference. The lead acid (PbA) conversion kit, based on the CalCars Open Source design, converts a Prius into a plug-in hybrid with an all-electric range of up to 15 miles if kept to a maximum of 52 mph. At freeway speed the gasoline engine will be engaged. Green Car Congress Article

Most fleets and people who convert prefer to deal with a system integrator, garage, or mechanic that is experienced with plug-in conversions and can maintain the vehicles. For example, Luscious Garage has converted about 20 vehicles. A garage might charge $2,000 or more to install a plug-in kit.

A123 Hymotion is establishing certified conversion centers throughout the nation so that people can convert their Toyota Priuses to plug-in hybrids for $9,995 per car. The conversion kit includes interfacing to the Prius computer that controls hybrid operation, interfacing with existing Prius NiMH battery, and includes a 5kWh A123 lithium battery.

Many early converts are enthusiastic about their plug-in hybrids. They report that electricity is only costing the equivalent of 75 cents per gallon, compared to over $4 per gallon of gasoline. If you plan to convert a hybrid to a plug-in, be sure that you have a safe and convenient place for recharging at home, work, or other location. For most, a 110 volt garage line will be the best option., a leading plug-in non-profit group, has been a major force in the growth of plug-in hybrids. Technical guru, Ron Gremban converted a Prius in 2004, and now contributes in many areas including the development of an Open Source plug-in platform. CalCars Founder Felix Kramer has patiently nurtured the expanding support of electric vehicle groups, environmental groups, media, legislatures, and auto makers. He has made “plug-in” a household name. There are a growing number of batteries, plug-in conversion kits, and garages for plug-in conversions. CalCars summarizes offerings and provides links.

In California, Sven Thesen converted his family’s Prius to a plug-in with help from He and his wife love it, and share the plug-in Prius as their only vehicle. For them, it was not about saving money, rather it was to protect the future for their young daughters and everyone’s children. In Boston, students Zoë and Melissa converted because they see conventional cars as bad for the environment. In Texas, Jim Philippi replaced his 12 mpg Yukon with a converted plug-in that gets over 100 mpg. He buys renewable energy credits to use wind power for the plug-in charging. See Videos and Read about over 100 Plug-in Drivers

There is some truth to the old adage that you can recognize the pioneers by the arrows in their backs. Early conversions have sometimes produced problems and downtime. The conversions typically add an expensive second battery pack to the vehicle’s existing nickel metal hydride battery pack. To make the plug-in hybrid controls work, the manufacturer’s control system must be “fooled” with new input signals.

The added battery pack often displaces the Prius spare tire. In the Escape, a larger battery pack is often placed in the rear cargo area, behind the passengers seating in the rear seat. Battery life is a function of the state of charge. In hybrids, auto makers only use a narrow range of charging and discharging, so that they can warranty batteries for up to ten years. In plug-in hybrids, batteries are usually deeply discharged, reducing battery life. Kits may only warranty the expensive batteries for up to three years.

If anything goes wrong, auto makers like Toyota and Ford, may claim that the conversion created the problem and that their warranty is void. Although the car owner may have legal recourse, many are leery of warranty issues.

Even if vehicle lifecycle operating costs are higher with plug-in conversions and warranties limited, these issues have not stopped plug-in hybrid enthusiasts who strongly feel that we cannot wait for the big auto makers. They want rapid adoption of solutions to address global warming and oil addiction to end now. These early drivers of plug-in hybrids are leading the way — at 100 miles per gallon.

I returned from the conference to learn that my wife was spending $2,000 for new drapes. This was good news, for I assumed that it would therefore be no problem for me to spend $24,000 on a new Prius, less a nice trade-in for our 2002 model, and another $10,000 to convert it to a plug-in. An interesting discussion ensued.

We both want to save gas and take some leadership in making the future better, but $25,000+ (after trade-in) is a lot of money, especially in this economy. If the battery is dead in three years, that could be another $10,000, or less if kit providers offer extended warranties. Giving up the spare tire space is another concern. At least three times in my travels, I have needed to put on the emergency spare.

Like many, we are more likely to wait until the end of 2010, hoping for several electric vehicle and plug-in offerings for auto makers. These vehicles will be designed to be plug-ins, with smaller engines, only one lithium battery pack, better drive systems, and balanced vehicle weight. These new offerings will be discussed in my next article.

We can all be thankful for those who refuse to wait, often concerned with climate and energy security issues. There are over 200 converted plug-in hybrids now on the road. One year from now, there may be over 1,000 plug-in hybrids of all shapes and sizes in use.

By the end of 2010, we may be able to start buying plug-in hybrids from major auto makers. Once cars designed from the ground-up to be plug-ins are made in volume, prices differentials will drop to a fraction of the current charge of converted hybrids. In a few years, plug-ins, with long battery warranties may cost less than $5,000 more than their hybrid counterparts.

Plug-in hybrids will succeed because of Andy Frank and the early leaders who converted their vehicles to use more electricity and less petroleum. We will all benefit from the reduced gasoline use and cleaner air that started with the courageous pioneering of the plug-in converts.

John Addison publishes the Clean Fleet Report and speaks at conferences.

Copyright (c) 2008 John Addison. Portions of this article will appear in John Addison’s next book.

Volt-Face for GM

by Richard T. Stuebi

Fascinating article in this month’s Atlantic profiling the herculean efforts apparently being undertaken by General Motors (NYSE: GM) to launch its plug-in hybrid vehicle, the Chevy Volt, by the incredibly ambitious deadline of 2010.

I took away the following thoughts from the article:

1. GM seems to actually recognize that they really didn’t give it the full college try with their previous electric vehicle work, the EV1 program, whose demise was profiled so blisteringly in the documentary, Who Killed the Electric Car?.

2. While GM is using the Volt program as a way to reinvent and redefine itself as a nimble company responsive to customer preferences, it must be noted that GM tried this with the new Saturn line twenty years ago too — and look where GM is now.

3. Bob Lutz — the GM Vice Chairman who is on record for stating his opinion that global warming is a “total crock of s**t” — is the key person within the kingdom who seized on the need for the Volt, being amazed at the gall of tiny start-up Tesla Motors daring to build an electric vehicle.

4. GM is being pretty gutsy by deciding to house the Volt within its core brand — Chevrolet — rather than insulate it in its own brand in case the project/car failed.

5. The Volt program appears to be pretty much “open source”, allowing the public in to see its progress. My guess is that this is to better manage the public’s expectations along the way, minimizing the potential for any bad surprises.

6. The project was launched without a business plan or any marketing/cost projections — no doubt from the huge public frenzy spawned by the concept car’s unveiling just 18 months ago in January 2007 — and still seems to run under a “damn-the-torpedos” philosophy, almost akin to NASA’s Apollo program of the 1960’s.

Within a couple of years, we’ll see what ultimately emerges from the Volt program, but no-one can doubt its audacity — which is a word I thought I’d never use in connection with GM.

Richard T. Stuebi is the BP Fellow for Energy and Environmental Advancement at The Cleveland Foundation, and is also the Founder and President of NextWave Energy, Inc.

Turbo Diesels Take on Hybrids

By John Addison (6/17/08). Last week, I test drove of the new Volkswagen Jetta TDI Diesel. It accelerated on to the freeway faster than my Toyota Prius. Driving freeways and stop-go city, I wondered which would be the bigger seller, the new European turbodiesels or the Japanese Hybrids.

For Detroit, May was the cruelest month, as they were outsold by Asia for the first time. Fuel economy is in; gas guzzling is being punished. General Motors, Ford Motor and Chrysler combined for a record low market share of 44.4 percent, compared with 48.1 percent for 10 Asian brands, according to the Autodata Corporation, the industry statistics firm. Toyota and Honda continued to gain market share. In the months ahead, Detroit will also lose share to the new fuel efficient diesels from Europe where diesel vehicles outsell gasoline alternatives.

The VW Jetta TDI Diesel has an EPA rated mileage on 41 mpg highway and 30 city with a 6-speed stick; 40/29 with an automatic. With 140 horsepower, the Jetta has plenty of performance. The diesel Jetta has a combined EPA rating of 33, compared with 25 for its gasoline cousin. In other words, diesel delivers over 30 percent better mileage, making a real difference to the pocket book even with diesel fuel’s higher prices, and to reduced greenhouse gas emissions.

Over 1.5 million Toyota Priuses are now on the road. The 2008 Priuses has an EPA rated mileage of 48 city and 45 highway. Notice that this hybrid with regenerative braking actually gets better mileage in stop and go than on freeways where there is added wind resistance. The Prius computer automatically disengages the engine most of the time when stopped and going slowly, making it more quiet than diesels. The Prius has a bit more passenger room than the Jetta. Both have the same trunk space.

Using both an electric motor and an engine, the Prius has always delivered more performance than I’ve needed, whether accelerating on a freeway or climbing a steep and icy mountain road. With its powerful electric motor, the Prius has plenty of torque and good acceleration.

Honda is not happy with Toyota’s success in selling four hybrids for everyone that Honda has sold. In John Murphy’s interview with Honda about their green image, Honda CEO Mr. Fukui stated that “Honda’s image was better but has evened out with [Toyota] because of the strong image of one single model, the Prius, which Honda feels is a problem. Next year, we will come up with a dedicated hybrid vehicle. We feel this model will have to overwhelm and overtake Prius.” It is rumored that the new Honda hybrid will be priced well under $20,000 and reach a broader market. Wall Street Journal Interview

In the next two years, Honda is also likely to bring diesels to the U.S. including the Acura, the Odyssey minivan, and the CR-V SUV,.

In the USA, many prefer SUVs to sedans. SUVs have more cargo space. Some can seat more than five people, but not the more fuel efficient SUVs. They ride higher. Some drivers feel safer, although sedans like the Prius and Jetta score better than some SUVs in front and rear collisions and are loaded with air bags and advanced vehicle controls.

The Ford Escape Hybrid is the most fuel efficient SUV on the market with an EPA rating of 34 mpg highway and 30 city. The VW Tiguan is a somewhat comparable compact SUV, but less fuel efficient with 26 mpg highway and 19 city using a six-speed shift; and only 24/18 with an automatic. The Tiguan is a light-duty vehicle that is roomy with 95 cubic feet for passengers and 24 for cargo. Drop the back seat and you have 56 for cargo.

The new VW Jetta Sportswagen offers many SUV lovers with an appealing alternative. It achieves the same mileage as the Jetta sedan of 41 mpg highway and 30 city with a 6-speed stick; 40/29 with an automatic. With 33 cargo cubic feet, it beats SUVs like the Escape and Tiguan. Drop the back seat and you have 67 cubic feet. Watch VW take market share from SUVs that get half the miles per gallon of this new turbo diesel.

The Prius, Jetta, Jetta Sportswagen, Tiguan and Escape all seat five people. All have ways to accommodate a fair amount of cargo when the back seat is dropped. The four-door sedans offer much better fuel economy. In the new era of $4 per gallon gas prices, sedans are gaining market share at the expense of SUVs and light trucks, like the once best selling Ford F150.

For those who enjoy both performance and luxury, Mercedes and BMW have new turbo diesel cars with about 30% better fuel economy than their gasoline counterparts. Last summer when I was treated to test drives of the Mercedes E320 Bluetec and the BMW 535D. I was impressed with the quiet, smooth, performance of these larger sedans and with the roomy luxurious experience. Mercedes and BMW are also bringing concept hybrid diesels to auto shows.

The new turbo diesels are not your diesels of the past. They are quiet. I could smell no emissions. Emissions are far lower than those of the previous decade, meeting the tough new 50 state requirements including using ultra-low sulfur diesel.

Forget putting B100 biodiesel in these new engines with common rail and very high pressure injection. Don’t think about home brewed vegetable oil or recycled restaurant grease. Even B20 voids the warranty in the U.S., although not in Europe where biodiesel quality is better. B5 is the limit in the U.S. Biodiesel’s Future

For the moment gasoline hybrids give most people better fuel economy than the new turbo diesels in the U.S. The diesel hybrids being developed by VW, Audi, Mercedes, and BMW could change the game. Most significant are diesel plug-in hybrids. The VW Golf TDI Hybrid concept is demonstrating 69 mpg. The full-hybrid supports an all-electric mode.

Volkswagen is serious about hybrids and electric drive systems. In announcing a new lithium-ion venture with Sanyo, Prof. Martin Winterkorn, CEO of the Volkswagen Group stated that VW’s future “will be directed more strongly at making electrically powered automobiles alongside ones driven by more efficient combustion engines.” Volkswagen’s Audi is also demonstrating a plug-in hybrid concept Quattro.

Toyota is well aware of the success of diesel in Europe. Toyota is developing an advanced diesel engine in both the Tundra and Sequoia. Toyota plans to expand its use of hybrids in a wide-range of vehicles. Currently Toyota is constrained by trying to increase battery manufacturing enough to meet its current exploding demand for hybrids. Toyota also plans a plug-in hybrid by the end of 2010.

General Motors does not intend to watch Asia and European rivals take all its market share. In late 2010, it plans to offer both gasoline and diesel plug-in hybrids that will give the average driver over 100 miles per gallon. In the USA it will introduce the Chevy Volt gasoline plug-in hybrid. In Europe, GM will sell a diesel plug-in hybrid under the Opel brand.

Are there other offerings of hybrids, diesels, and other fuel efficient alternatives? Yes. A good starting point to compare vehicles is at the EPA’s Fuel Economy site.

Different people need different types of vehicles. Hybrids benefit everyone who spends part of their driving in cities and/or stop-go traffic. The new turbo diesels tend to get thirty percent better performance than their gasoline counterparts. Two long-term trends are converging – the expanded use of more fuel-efficient diesel engines and the expanded use of electric drive systems for hybrids, plug-in hybrids and for electric vehicles.

Cleaner vehicles, however, are not the whole solution. When gasoline hit $4 per gallon, Marcia and Christian convinced a car dealer to take their two vehicles as trade-in, including a large SUV, for one more fuel efficient SUV. Living and working in a city, only one vehicle was needed because both could use public transportation and car pool with friends. They save over $5,000 per year by sharing one vehicle. Now that is a real solution to save at the pump and help all of us by saving emissions.

John Addison publishes the Clean Fleet Report.

Electric Cars for 2010

By John Addison (6/4/08). With oil prices rocketing past $130 per barrel, a growing number of vehicle makers are planning to offer electric vehicles by 2010. Zero gasoline will be used.

Over 40,000 electric vehicles (EV) are currently used in the United States. Most are used in fleet applications, from maintenance to checking parking meters; these EVs are mostly limited to 25 mph speed and 20 mile range. A growing number of fleet EVs, however, are early trails of a new generation of freeway-speed EVs that will be available to the mass consumer market in 2010.

Mitsubishi is on target to sell its electric vehicle in the U.S. in 2010. The i-EV is a friendly looking sub-compact which easily handles freeway speeds. It’s expected 100 mile-plus range per charge will meet the needs of urban dwellers and most in suburbia. The drive system uses three permanent magnetic synchronous motors which receive power from a 16kWh lithium battery stack. Tokyo Electric Power is currently testing ten i-EV

Nissan’s and Renault’s famous CEO, Carlos Ghosn, plans to be selling electric vehicles in the U.S. market in 2010. He anticipates more cities following London’s model of expensive congestion fees, with fee exemptions and preferred parking for zero-emission vehicles. In many markets, Nissan will offer electric vehicles with permanently installed lithium batteries that will be trickle charged. Nissan owns 51% of Automotive Energy Supply Corporation, which plans to be producing lithium batteries for 10,000 vehicles annually by 2010. Plant expansion has begun to produce lithium batteries for 60,000 electric vehicles annually.

By 2012, Ghosn plans to have a Renault-Nissan alliance offering a wide range of electric vehicles in many major markets, charging ahead of all competition. Economist Article

In Israel and Denmark, Renault and Nissan will partner with Project Better Place. to sell electric vehicles without batteries. Project Better Place will lease batteries that can be quickly exchanged at many locations. The exchange will take no longer than a traditional gasoline fill-up, appealing to motorists needing extended range. The battery lease will cost a fraction of what most now spend on gasoline.

Popular in Europe, Think will bring its electric vehicle to the U.S. Think city reaches a top speed of 65 miles per hour and can drive up to 110 miles on a single charge. Think city meets all European and US federal motor vehicle safety requirements. At the Geneva Motorshow earlier this year, Think announced a strategic partnership with energy giant General Electric, also an investor in Think. By 2011 look for a larger TH!NK Ox. Think has also established partnerships in the US with battery suppliers A123 and EnerDel. Think has established a U.S. headquarters and will begin sales in the U.S. before 2010. A123 Technology Review Article

In 2009, the smart ev may be available in the U.S. The cars 70/70 specs are appealing for city drivers: 70 mile range, 70 mile per hour freeway speed. Daimler’s smart ev is in trail in the UK with the Energy Saving Trust, Islington and Coventry Councils, Lloyds Pharmacy, EDF Energy, BT, and other fleets. To achieve a range of 72 miles, it is using the Zebra sodium-nickel-chloride battery which has caused maintenance difficulties in some U.S. fleets.

The cityZENN is planned for a top speed of 80 mph and a range of 250 miles. Powered by EEStor barium-titanate ceramic ultracapacitors, the cityZENN will be rechargeable in less than 5 minutes! Venture capitalists are betting that stealth EEStor is real. On Friday, May 30, ZENN Motor Company announced that it had raised another $15 million dollars.

Most major auto makers continue to believe that most U.S. customers will insist on ranges exceeding 250 miles and a national infrastructure of fuel refilling (or recharging) in five minutes. Even as GM announces factory closings and plummeting sales, CEO Richard Wagner states that GM is committed to bring the plug-in hybrid Chevy Volt to market by the end of 2010. If it can deliver at under $30,000, the vehicle will offer tough competition to some of the smaller EV players.

As Toyota solidifies its number one global market share leadership, it also remains on target to deliver a plug-in hybrid to the U.S. market by the end of 2010. It is likely to have an all-electric range of 40 miles and a gasoline range 10X that amount. Watch Toyota use an expanded line of hybrid vehicles to unset GM, making Toyota the market leader is the U.S.

May rained on every auto maker’s parade in the U.S., except Honda, which set sales records with its fuel efficient Civic. Honda is passing Chrysler to become the #4 seller in the U.S. Honda is rumored to be bringing a new hybrid to the U.S. next year priced in the mid-teens. This will give hybrids a big boost in market share from the current 3% of total vehicle sales.

While I was giving a speech at the Fuel Cell 2008 , Honda announced that it would lease 200 Clarity FCX hydrogen fuel cell cars for $600 per month, including maintenance. In June, it will start selecting from 50,000 who have expressed interest in the 270-mile range four-door sedan. The FCX Clarity is aerodynamic and beautifully styled. Honda’s new hybrid is likely to have a similar body style.

Some critics have dismissed electric vehicles as golf carts for retirees and sport car toys for millionaires. These critics have missed a fundamental market shift that started with the success of hybrid-electric cars, light electric vehicles, and with e-scooters. Customer enthusiasm for electric vehicles is the result of many factors:

  • Oil Prices
  • ZEV Cities & Congestion Tax
  • Electronic drive simplifies auto design
  • Vehicle weight reduction with electric accessories and components
  • Reduced maintenance because of few mechanical components
  • GHG Regulation
  • Battery technology advances that reduce cost and weight
  • Increased battery safety
  • Success of hybrid-electrics

At the FRA Renewable Energy Investor Conference (my presentation handouts), I led a panel discussion about electric vehicles and plug-in hybrids. Major private equity and project finance investors were optimistic in sessions about electric vehicles, solar power, wind power, and carbon trading. Many expressed discouragement in the biofuels sessions, but at the same time saw increased opportunities with bioenergy and bio-methane from landfills.

In a few years, millions will be driving full-featured freeway-speed four-door sedan electric vehicles. Look for a shift away from foreign oil to riding on local renewable energy.

John Addison publishes the Clean Fleet Report and speaks at transportation and energy conferences.

General Motors Looks Beyond Oil

By John Addison. “One of the most serious business issues currently facing General Motors is our product’s near total dependence on petroleum as a source of energy. To address this issue, we have been implementing a strategy to displace petroleum through energy diversity and efficiency,” explained Dr. Larry Burns, Vice-President of Research and Development for General Motors, during his keynote speech on April 2 at the National Hydrogen Association (NHA) Conference.

When Dr. Burns speaks, the industry listens because he directly influences the future of General Motors and of the auto industry. March was one of the worst in years for all vehicle makers. GM and Chrysler saw a 19% drop in sales; Honda a more modest 3% drop. There was a direct correlation in sales loss and fuel efficiency. GM and Chrysler fleets gulp oil refined fuels; Honda’s takes large sips.

Make no mistake, GM is determined to be less dependent on oil as Larry Burns clearly stated, “We view renewable biofuels, electricity, and hydrogen as the most promising alternative energy carriers for automobiles. We are working very hard and fast on all three fronts to develop and implement meaningful technology solutions that provide our customers with a range of choices from “gas-friendly to gas-free” vehicles.” Next generation biofuels, however, will likely take years to get from labs to large scale production. When available, they will primarily be blended with gasoline and diesel, rather than requiring new stations. GM, and other auto makers, is frustrated to see hydrogen in only a few dozen stations globally.

Electricity is the most promising alternative fuel for GM and most auto makers. Electric motors are far more efficient than gasoline engines. Electric motors are used in hybrids, plug-in hybrids, battery electric vehicles, and hydrogen fuel cell electric vehicles. In late 2010, General Motors will start selling the Chevrolet Volt, a plug-in hybrid that will give many drivers 100 miles per gallon of gasoline, because it will primarily run on electricity. In three years, consumers may have multiple plug-in choices including Toyota’s planned offering.

The Volt is an implementation of E-Flex. GM’s E-Flex is an electric drive system centered on advanced batteries delivering power to an electric motor. Additional electricity can be delivered by a small engine coupled to a generator, or by a hydrogen fuel cell. In the future GM could elect to implement E-Flex in a pure battery-electric vehicle.

Over two million vehicles now use electric motors and advanced batteries, thanks to the early success of hybrids. Electric drive systems will continue their strong growth as they are implemented in battery electric vehicles, hybrids, plug-in hybrids and hydrogen fuel cell vehicles.

The plug-in hybrids’ big competition will be battery electric vehicles (EV). London’s congestion tax is cascading into a growing number of cities that will require zero-emission vehicles. Announced EV offerings are coming by 2010 from Nissan, Renault, Mitsubishi, Subaru, and emerging players such as Smart, Think, Tesla, Miles, and a host of Asian companies that will display at the upcoming China Auto Show. With the average U.S. household having two vehicles, these EVs would be perfect for the 80% of U.S. driving requires far less than 100 miles per day.

Where does this leave hydrogen? Fleets. Hydrogen’s fleet use continues to grow, especially in public transportation. Three factors are contributing to the growth of hydrogen vehicles: energy security, success of natural gas vehicles, and the growth of electric vehicles.

Hydrogen delivers energy security by being available from a wide range of sources including waste hydrogen from industrial processes, electrolysis of water, biosources, and steam reformation of natural gas. Where truck delivery is avoided, all of these approaches significantly reduce greenhouse gases, source-to-wheels, in comparison to diesel, gasoline, and current biofuel alternatives. Emission Comparisons from LCFS

In transportation, hydrogen may be the long-term successor to natural gas. There are about five million natural gas vehicles in operation globally. Over 90% of the natural gas used in the USA is from North America. Transportation use of natural gas has doubled in only five years. Natural gas vehicles are popular in fleets that carry lots of people: buses, shuttles, and taxis.

Natural gas is primarily hydrogen. The molecule is four hydrogen atoms and one carbon. Steam reformation makes hydrogen from CH4 and H2O. Hydrogen is used in fuel cell electric vehicles with far better fuel economy than the natural gas engine vehicles that they replace. For example, at Sunline Transit, their hydrogen fuel cell bus is achieving 2.5 times the fuel economy of a similar CNG bus on the same route. Specifically 7.37GGE to the CNG vehicle’s 2.95GGE. Sunline has a new fuel cell bus on order with even great expected gains. NREL Report

Most early adapters of hydrogen vehicles are natural gas fleet owners with vehicles that use compressed natural gas. Some fleets are mixing hydrogen with natural gas and running it in the existing CNG vehicles. A common approach is a 20% blend with minor changes such as timing in existing engines.

Public transportation is hydrogen’s biggest success. The San Francisco Bay Area is now upgrading from six hydrogen fuel cell buses to twelve. The area will grow from carrying two thousand passengers a day on hydrogen, to five thousand, using lighter next generation drive systems with fuel cells whose warranties have expanded from 1,000 hours to 12,000 hours.

For the 2010 Winter Olympics, Whistler will use twenty hydrogen fuel cell buses which will transport over 100,000 visitors during the games, then continue as the majority of Whistler’s fleet.

Although hydrogen will grow in fleets that can install the fueling and the vehicles, it will be many years before average consumers consider hydrogen vehicles. Outside of Southern California there is a lack of public infrastructure. To achieve a range of 300 miles, most auto makers want high pressure (700 bar). In California, only Irvine offers the higher pressure. GM is putting nine temporary 700 bar fuelers in Southern California. GM is also putting another 100 hydrogen vehicles on the road. Project Driveway Article

Honda is ahead of all other hydrogen vehicle makers in offering its acclaimed FCX Clarity for $600 per month. It does fine with the 350 bar pressure offered at California’s 24 hydrogen stations and delivers a 270 mile range. The vehicle will probably only be offered to select individuals in California communities where public stations are available such as Irvine, Torrance and Santa Monica. Even for Honda, Fuel Cell Marketing Manager Steve Ellis observes that “Success with hydrogen is more like a marathon than a sprint.”

To succeed, all businesses must monitor their industry, looking for points of inflection that lead to a new paradigm. In talking with Larry Burns at the NHA conference he told me that he has seen the signs since 2001. 9/11, Katrina, and oil prices have signaled major changes. All the world’s major economies from the USA to China are highly dependent on imported oil. Dr. Burns now concludes that in 2008 we are at a tipping point.

He stated, “We truly are at a defining point in the development of the technology. What and how we execute over the next 5 years will shape the next 50 years!…Together, we must act rather than debate, create the future rather than try to predict it, and solve the challenges we face now rather than handing these challenges off to future generations.”

John Addison publishes the Clean Fleet Report. He will be leading a panel about PHEV and EV at the FRA Renewable Energy Conference and presenting “The Great Fuel Race” at Fuel Cell 2008.

Heavy-Duty Vehicle Trends for 2008

By John Addison (2/8/08). Most oil consumption and greenhouse gas emissions from transportation are not from passenger vehicles; they are from the heavy-duty vehicles, ships, and planes that move all our goods, serve public transit, and provide the infrastructure that keeps cities running. Heavy-duty operators have often been years ahead of passenger vehicle owners in using advanced technology to do more with less fuel.

Hybrids. Wal-Mart operates 7,000 trucks that in 2005 drove 872 million miles to make 900,000 deliveries to its 6,600 stores. Wal-Mart has set a goal of doubling the fuel efficiency of its new heavy-duty trucks from 6.5 to 13 miles per gallon by 2015. 26 billion pounds less of carbon dioxide would be emitted over 15 years as a result. Demand for oil is also reduced with over one billion less gallons of diesel required over that 15 year period.

Wal-Mart is defying the conventional wisdom that hybrid technology is of little help for large trucks that already have efficient diesel engines. Wal-Mart delivers goods from regional warehouses on an optimized route to its stores. Routes often involve heavy stop-go city driving. With hybrid technology, every touch of the brakes causes energy to be captured. Where trucks previously idled with engines running, hybrids can run all auxiliary power with the engine off, using large battery stacks for the electricity.

Wal-Mart has more than 100 hybrid light-duty vehicles. Now Wal-Mart sees bigger potential savings in heavy-duty Class 8 trucks. Wal-Mart plans to replace Peterbilt 386 big-rigs with hybrid versions of the same truck by 2009. Wal-Mart Clean Fleet Report

Plug-in Hybrids. PG&E is one of 14 utilities in the nation participating in the pilot truck program, sponsored by WestStart‘s Hybrid Truck Users Forum (HTUF), a hybrid commercialization project bringing together truck fleet users, truck makers, technology companies, and the U.S. military, to field-test utility trucks with an integrated hybrid power-train solution.

This new Class 6/7 hybrid truck is built by International incorporating the Eaton (ETN) hybrid drive system with a 44kW electric motor. Eaton has produced more than 220 drive systems for medium and heavy hybrid-powered vehicles. Vehicle configurations include package delivery vans, medium-duty delivery trucks, beverage haulers, city buses and utility repair trucks – each of which has generated significant fuel economy gains and emission reductions. Fleet customers for Eaton hybrid power have included FedEx Express, UPS, Coca-Cola Enterprises, The Pepsi Bottling Group, and the 14 public utility fleets into which were placed 24 hybrid-powered repair trucks.

Idle-off. In many heavy-duty fleets, engines idle 40% of the time at stops for many auxiliary needs including air conditioning, heating, running electronics inside the cab and more. These auxiliary functions can now be powered with the batteries in hybrid powertrains, with auxiliary power units such as fuel cells, and with truck-stop electrification. Heavy-vehicles can now be programmed to automatically idle-off after a prescribed amount of stop time, such as California’s five-minute law. Idle-off is possible by GPS location, such as specific bus stops. Wal-Mart alone estimates savings of $25 million with idle-off and APUs for its 7,000 trucks. Transit operators save millions of gallons of fuel and keep passengers happy with electronic air conditioning without diesel fumes.

Natural Gas. There are about five million natural gas vehicles in operation globally. These vehicles consume 238 million gasoline gallon equivalents. That amount has doubled in only five years. CNG vehicles are popular in fleets that carry lots of people: buses, shuttles and taxis. Natural gas fleets are likely to double again in the next five years. Los Angeles County Metropolitan Transportation Authority (LAMTA) serves over ten million people with the nation’s largest natural gas fleet, comprised of over 2,000 CNG buses. A growing number of riders enjoy higher-speed service with LAMTA’s bus rapid transit.

To help clear Southern California air, the Ports of Los Angeles and Long Beach established a $1.6 billion Clean Truck Superfund to purchase 5,300 alt-fuel trucks by 2010 out of a total fleet of 16,800 Class 8 trucks. All are likely to be Westport LNG systems installed in Kenworth T800 trucks.

Hydrogen Fuel Cells. Many passenger cars have the potential to meet all driver needs by plugging in for a nightly recharge of batteries in electric vehicles. Buses running 16 hours daily and climbing 12% grades can also be electric, but most need the added electricity provided by hydrogen fuel cells. Over 3,000,000 people have ridden these vehicles in Europe and the U.S.

Energy Security. The Army’s NAC is pursuing hybrid truck technology to significantly reduce the Army’s fuel consumption and logistics needs, to provide field-generation of power and to provide quiet, stealth operations. The U.S. Army has a fleet of over 246,000 vehicles with a goal to reduce fuel consumption by 75% by 2010.

Green Supply Chains. ConAgra has contracted with Nova Biosource Fuels to convert food processing waste into biofuel, greatly helping with waste regulations. This provides Nova Biosource Fuels with a low-cost feedstock for high-quality biodiesel. ConAgra has guaranteed the purchase of 130 million gallons per year. California-based State Logistics, has grown its business by providing more-sustainable shipping options for companies like Clif Bar. Prologis will only build USGBC LEED certified distribution centers.

On February 20, fleet managers, vehicle technology leaders, government leaders, other experts and stakeholders will gather in San Diego to discuss their success in all of these areas at the Clean Heavy-Duty Vehicle Conference 2008.

“Clean Heavy Duty Vehicle 2008 highlights the vehicles and fuels that will actually cut our greenhouse gases and reduce our dependence on oil,” said John Boesel, President and CEO of WestStart-CALSTART, a leader in spurring green tech in transportation. “The conference brings together the key business and political leaders helping bridge the technological and financial gaps to bring clean transportation solutions to market.”

Stay tuned for more exciting progress in 2008.

John Addison publishes the Clean Fleet Report.

Smart Grids and Electric Vehicles

By John Addison (1/28/08). In the future, utilities will pay you to plug-in your vehicle. Millions will plug-in their electric vehicles (EV), plug-in hybrids (PHEV) and fuel cell vehicles (FCV) at night when electricity is cheap, then plug-in during the day when energy is expensive and sell those extra electrons at a profit. Vehicle to Grid (V2G) technology is a bi-directional electric grid interface that allows a plug-in to take energy from the grid or put it back on the grid. V2G helps solve the major problem that demand for electricity is high during the day when everything from industrial plants to air conditioning is running full blast and then excess electricity is wasted at night.

Several early models of passenger vehicles have enough energy stored in advanced batteries to power several homes for hours. Hybrid electric buses and heavy trucks could power many homes or a school or a hospital in an emergency. Recent announcements demonstrate that electric utilities and some auto makers want to make V2G a reality.

The Smart Grid Consortium, established in December 2007 by Xcel Energy, will select a community of approximately 100,000 residents to become a Smart Grid City using V2G. Potential benefits include lower utility bills for residents, smarter energy management, better grid reliability, improved energy efficiency, and support for EVs and PHEVs.

Current consortium members include Accenture, Current Group, Schweitzer Engineering Laboratories and Ventyx. Smart Grid City will use a realtime high-speed two-way communication throughout the distribution grid. Smart meters and substations will be integral. Installation will be made of thousands of in-home control devices and the necessary systems to fully automate home energy use.

The current electrical grid is poorly designed for distributed generation of power. Individuals and businesses lose months and connect fees when they add solar and other forms of renewable energy to the grid. Smart Grid City will easily support up to 1,000 easily dispatched distributed generation technologies including PHEVs, distributed batteries, solar and wind.

In addition to Smart Grid City, another major EV/V2G initiative is unfolding.

The Renault-Nissan Alliance and Project Better Place have signed a Memorandum of Understanding to create a mass-market for electric vehicles in Israel which is an excellent target market: it has a sales tax exceeding 60% for gasoline vehicles, gasoline costs over $6 per gallon, most driving fits the range of electric vehicles, and the government strongly supports energy independence.

Project Better Place plans to deploy a massive network of battery charging spots. Driving range will no longer be an obstacle, because customers will be able to plug their cars into charging units in any of the 500,000 charging spots in Israel. An on-board computer system will indicate to the driver the remaining power supply and the nearest charging spot. Nissan, through its joint venture with NEC, has created a battery pack that meets the requirements of the electric vehicle and will produce it in mass volume. The entire framework will go through a series of tests starting this year.

The Israeli model is different than the rapid battery swap model that Better Place has promoted as better than “dangerous” fast charging. For the future, Renault is working on development of exchangeable batteries for continuous mobility.

As part of the solution framework, the Israeli government will provide tax incentives to customers, Renault will supply the electric vehicles, and Project Better Place will construct and operate an Electric Recharge Grid across the entire country. Electric vehicles will be available for customers in 2011.

Just as wireless service providers offer smartphones at discounted prices, Project Better Place will offer discounted electric vehicles with usage pricing plans. Pre-paid 600 kilometer cards are one approach that is suggested. A free car on a four-year plan in France is another idea mentioned by Shai Agassi, CEO of Project Better Place. Annual use of an EV should be less than the average cost of $8,000 per year for using a gasoline in many countries including the USA.

Shai Agassi predicts that Israel will have over 100,000 electric vehicles in use by 2010. This will be five percent of the nation’s vehicle population. The number represents a significant step towards energy independence.

Project Better Place has already received over $200 million of venture capital investment. Shai Agassi presented their new business model at Davos. Mr. Agassi was an executive at SAP that lead the software company to being the enterprise software leader ahead of Oracle, IBM, and all others. Agassi’s Davos Insights

Success with V2G would be a double win for electric utilities. Millions of EVs and PHEVs would expand the sale of electricity as an alternative to oil. Utilities could avoid building more dirty peaking power plants. Instead they could buy back electricity at peak hours from vehicle drivers. Clean Fleet Article It would be a financial win-win for all.

John Addison publishes the Clean Fleet Report with archives of over 60 articles and reports about electric vehicles, V2G, biofuels, fleet success and more.

Super Mileage with New Four-Door Sedans

By John Addison (1/17/08). Fuel economy was on display at the Detroit Auto Show. Starting Saturday, even more exciting vehicles will be unveiled at the North American International Auto Show, also in Detroit. $100 per barrel oil and new CAFÉ standards have made improved fuel economy mandatory for auto makers.

Most popular with individuals and fleets is the four-door sedan. Over the next three years, there will be a number of affordable offerings with fuel economy from 40 miles per gallon, to infinite miles per gallon.

General Motors continues to draw considerable attention with its Chevy Volt, which will offer 40 mile range in electric mode before its small 1L engine is engaged. 40 miles accommodates the daily range requirements of 78% of all U.S. drivers. The Volt uses an electric drive system with a small ICE in series that is only used to generate added electricity, not give power to the wheels. GM hopes to take orders for the Volt at the end of 2010.

World hybrid leader, Toyota, is likely to beat GM to market with a new plug-in hybrid also using lithium batteries. Toyota President Katsuaki Watanabe discussed Toyota’s vision, “Sustainable Mobility addresses four key priorities. First, we must address the vehicles themselves and the advanced technologies. Highly advanced conventional engines, plug-in hybrids, fuel cells and clean diesels, as well as many other innovative new technologies, will all play a part. Second, we must address the urban environment, where these new technologies will live. In the future, we foresee ‘mixed mobility,’ combining intelligent highways and mass-transit, bike paths and short-cut walking routes, recharging kiosks and hydrogen fuel stations…. By 2010, we will accelerate our global plug-in hybrid R&D program. As part of this plan, we will deliver a significant fleet of PHEVs powered by lithium-ion batteries to a wide variety of global commercial customers, with many coming to the U.S.” President Watanabe’s Remarks

A new offering from China’s leading battery manufacturer, BYD, will bring a plug-in hybrid to market sooner than Toyota and GM and at a lower price. BYD executive Mr. Lin said BYD Auto plans to launch the plug-in hybrid during the Beijing Olympics at a price of less than $30,000 (200,000 Yuan). The company sold about 100,000 cars in China in 2007, he said. The F6DM (Dual Mode, for EV and HEV), is a variant of the front-wheel drive F6 sedan that BYD introduced into the China market earlier this year, actually offers three modes of operation: full battery-powered EV mode driving its 75 kW, 400 Nm motor; series-hybrid mode, in which a 50 kW, 1.0-liter engine drives a generator as a range-extender; and parallel hybrid mode, in which the engine and motor both provide propulsive power. Expect the BYD F6DM to be selling in the U.S. by early 2010. Green Car Congress

Ford announced EcoBoost – this new 4-cylinder and 6-cylinder engine family features turbocharging and gasoline direct injection technology. The EcoBoost technology will deliver approximately 20% better fuel economy and 15% fewer CO2 emissions. The company will introduce EcoBoost on the new Lincoln MKS in 2009. Eventually the technology will be integrated into a range of flex fuel vehicles, which currently suffer from poor gasoline mileage, and 27% worse mileage with E85 ethanol.

Europeans are already enjoying 25% mileage improvements with new turbo diesels with direct injection. Exciting models will be available in the U.S. this year. Daimler, Audi and Volkswagen, all partners in the BLUETEC clean diesel marketing initiative showed a new Tier 2 Bin 5 compliant (i.e., able to be sold in all 50 states) BLUETEC model at the North American International Autoshow in Detroit

VW is the diesel passenger car sales leader. The Tier 2 Bin 5-compliant 2009 model year Jetta TDI, equipped with the clean diesel engine option, will be on sale later this year. Some drivers may experience over 40 miles per gallon with the Jetta’s efficient 2L four-cylinder engine.

Will we see the combined efficiency of diesel and hybrids? Yes. The Mercedes S 300 BLUETEC HYBRID is a 4-cylinder diesel a with hybrid module that gives it the performance of a V-8. The luxury saloon delivers 44 miles per gallon (5.4L/100km).

The Detroit shows unveiled a dazzling array of muscle trucks, loaded SUVs, hot sport cars, concept electric vehicles, and many model improvements.

Over the next three years, the biggest impact on reduced fuel use and lowered emissions will be in the every popular four-door sedan. Toyota has a commanding lead with over one million four-door Priuses on the road. Soon, Toyota will be selling one million hybrids per year.

Fuel economy improvements in the new vehicles are the result of using lighter materials, better aerodynamic design, lighter and more efficient engines, replacement of more mechanical components with electric, hybrid and plug-in hybrid designs.

While some auto executives still think that the key to financial success is yesterday’s big heavy and low-mileage cash cow, others recognize the path to sustained profitability is to deliver great fuel economy in popular full-featured cars. The global race is on. The sure winner is the customer.

John Addison publishes the Clean Fleet Report.

New Electric Vehicles in Your Near Future

By John Addison (12/20/07). By an overwhelming 314 to 100 vote, the US House of Representatives passed the energy bill (H.R.6) with the new CAFE standards requiring auto makers to sell vehicles that average 35 miles-per-gallon (mpg) by 2020. President Bush signed the bill into law. Americans want to pay less at the pump and be less dependent on foreign oil, especially oil from countries hostile to the U.S.

Many are not waiting until 2020. They are driving vehicles now that get better than 35 miles per gallon. Some are starting to drive plug-in hybrids that achieve over 100 miles per gallon. 40,000 in the U.S. drive electric vehicles that use zero gasoline and produce zero emissions.

Sherry Boschert rides on sunlight. She charges her electric vehicle with her home’s solar power. Her Toyota RAV4 EV runs fast on freeways and silent on quiet streets. She uses a zero-emission approach to transportation. Sherry Boschert is the author of Plug-in Hybrids: The Cars That Will Recharge America.

Some are celebrities like Tom Hanks, who has been driving electric vehicles for years including his RAV4 EV and Scion xB that was converted to an EV by AC Propulsion. Other celebrities have deposited $100,000 each on average, eagerly awaiting the Tesla Roadster electric vehicle with its 245 mile electric range.

Electric vehicles are not just for celebrities. Many are priced at a more modest $10,000 and only go 25 miles per hour. They are popular in fleets of university campuses, large facilities that need zero-emission in-door vehicles, shuttles in corporate multi-building campuses, and even the military. They are a popular second car in two vehicle households. These low-cost EVs are fine for those who will compromise on speed and range. Reasonably priced new vehicles are coming with few compromises and many exciting features.

Mitsubishi Motors Corporation (7211:JP) has been demonstrating its new electric-vehicle, the iMiEV Sport which it plans to launch in Japan and possibly other countries in 2009. The car has a range of 93 miles (150 km) and a top-speed of 93 mph (150 km/h).

In 2009, the smart ev may be available in the U.S. The cars 70/70 specs are appealing for city drivers: 70 mile range, 70 mile per hour freeway speed. Daimler’s (DAI) smart ev is in trial in the UK with The Energy Saving Trust, Islington and Coventry Councils, Lloyds Pharmacy, The CarbonNeutral Company, EDF Energy and BT. To achieve a range of over 70 miles, it is using the Zebra sodium-nickel-chloride battery which has caused maintenance difficulties in some U.S. fleets. More than 40,000 of the gasoline fueled smart fortwos have been sold in the UK since the car was launched here in 2000. The vehicle is popular in London, where electric charging is free and daily congestion taxes are high for petrol guzzlers.

In addition to electric-vehicles, plug-in hybrids have captured the imagination of many. These vehicles are often designed to go a number of miles in battery-electric mode before internal combustion engines are engaged. Last week, I attended a General Motors (GM) showing of its Chevy Volt. The Volt is an elegant four-door sedan. One GM designer admitted that the Mercedes CLS gave some inspiration for the Volt. The Chevy Volt can be driven 40 miles in electric-mode using 16kW of lithium batteries, before its small 1L engine is engaged. 16kW is twelve times the storage of my Prius NiMH batteries.

40 miles accommodates the daily range requirements of 78% of all U.S. drivers. The Volt uses an electric drive system with a small ICE in series that is only used to generate added electricity, not give power to the wheels. GM’s modular E-Flex propulsion could be adapted to various engines including diesel, fuel cells, and potentially battery-electric. At the Frankfurt Auto Show, GM showed the European sibling of the Volt, the GM Opel Flextreme concept car, which included a 1.3L diesel engine.

Look for more E-Flex announcements from GM in 2009. Announcements could include a more compact global vehicle at an appealing price point and a commitment to a diesel E-Flex vehicle.

GM Manager, Rob Peterson, emphasized that GM is committed to electric vehicles and plug-in hybrids. To keep the Volt on track, issues that might delay a normal vehicle in development are resolved by the E-Flex Leadership Board Committee which includes Bob Lutz and Larry Burns.

The Volt is targeted to go on sale November 2010. I told a General Motors executive that if it were priced under $40,000, then I would be interested in buying one. He confidently smiled and replied, “Have your checkbook ready.”

If you need to carry more people and cargo, GM plans to start sales of its Saturn Vue plug-in hybrid in 2009. Even though the vehicle will use a 3.6L gasoline engine, it is likely to offer the best mileage of any SUV on the market.

Toyota (TM), Ford (F), Volvo, and Saab all have plug-in hybrids in early fleet trails. Other fleets are doing their own custom integration of plug-in hybrids from sedans to heavy vehicles.

Carlos Ghosn, CEO of Nissan Motor Co and Renault SA, said that his auto group is planning to mass produce an electric car mainly targeted at big cities by 2012. From London to Shanghai, he sees increased possibilities that only ZEV will be allowed in city centers.

Look for a number of exciting choices in vehicles that use little or no gasoline, improving energy security and addressing the threat of a potential climate crisis. Other Clean Fleet EV Articles

John Addison publishes the Clean Fleet Report.

The Wright Way to the Electric Car

As with most things, there is a right way and a wrong way to go about electric vehicles. Last Friday Ian Wright and I spent a couple of hours around my conference table discussing our philosophies on electric cars. Ian knows something about this topic, as he was formerly an executive at EV startup Tesla Motors, and is now the founder and CEO of Wrightspeed, a Silicon Valley based startup whose first car is going to be a high performance electric supercar, price tag just shy of $200K. And as it’s electric, Ian expects it should outstart, outrun, outturn, and generally outperform anything in its class.

While it has been a hot topic recently in the cleantech sector, I am known among my friends as being a real skeptic when it comes to EVs, but behind Ian’s business plan he got my attention with two ideas that are worth repeating: payback and plug-ins.

First, Ian doesn’t care about gas mileage per se – he cares about performance, power, and most importantly, payback. Focus on the vehicles actually burning the most gas, irrespective of fuel efficiency. That is, instead of making tiny, compact, fuel efficient target cars more efficient with EV and hybrid technology – focus on the gas guzzlers. Ian’s point is well taken. A small, fuel efficient car that gets 35 mpg and drives a typical 12,500 miles per year only uses about 350 gallons per year. A large pickup truck that gets 12 miles to the gallon uses over 1,000 gallons for the same mileage – nearly 3x as much. And if that truck is a work truck driven 25,000 miles per year, it would use over 2,000 gallons of fuel per year, nearly 6x the little car. That truck owner may spend upwards of $50K in fuel over its life, where the commuter car owner may spend a small fraction of that.

When I asked him for comments on my example Ian added: “The special case of congested city driving might be worth mentioning, since everyone thinks a lot of fuel is wasted there. But if you drive a Prius 10 hours/week in congested city traffic, it’s only about 150 gallons/year! Not much point in trying to improve on the Prius for that use. (The arithmetic: congested traffic is defined as 12mph average; 10 hours/week would be 120 miles/ week, or 6240 miles/year. The Prius shines in this application, getting maybe 40mpg, so 156 gallons/year.)”

Putting expensive hybrid and EV technology in the small car not only has a worse financial payback – compounding the perennial problem of EVs being too costly, but the same 20% efficiency improvement does very little to reduce overall fuel consumption for society compared to the same efficiency gains in a big truck that drives a heck of lot of miles.

So Ian asks, if we want to both find a way to save car owners money, AND save the world – wouldn’t we focus on applying technology to where the problem is the worst and the returns are the best?

When Ian looked at the automotive landscape and asked the question, where is the most fuel being burned, and how do we reduce that with technology? The answer? Performance cars and big work trucks. Not surprisingly, these are his target markets.

And why are high performance vehicles like sports cars and Ford F350s so fuel inefficient anyway? Take this as an example answer. If you need a big truck to have lots of power for short periods of time (for instance, in towing), then the truck engine and systems have to be sized to deliver the maximum power. But anytime you’re not using all that power (ie, most of the time), the truck is usually running well below its optimum – and burning lots of fuel for no extra gain. It’s the same rationale for a sports car designed to run optimally at 90 mph, which performs worse at the average driver’s speed of 50- 60 mph.

Ian’s more detailed explanation to me put it very elegantly: “Roughly speaking gasoline engines are most efficient at wide open throttle and the rpm that gives max torque. If you try to operate a supercar at wide open throttle, it will be doing 200mph, and of course you’ll be losing most of the energy to aero drag. The ENGINE will be operating efficiently… but if you operate the car down where aero drag is reasonable – 50mph – then the engine will be operating at a few percent of rated power, and very inefficient. Why is it inefficient? The simple answer is that since the throttle is almost closed, there is almost a vacuum in the intake manifold, and the EFFECTIVE compression ratio is very low. You are trying to compress a vacuum. Engine efficiency is very dependent on compression ratio.

80 years ago, there were cars that could transport a family of 4 at 50mpg. The Austin 7 comes to mind. Engine technology has improved dramatically since the 30s, yet the best modern cars don’t do any better than the Austin 7. Why is that? One big reason is that the Austin 7 had, well, 7 horsepower (actually about 10hp – the “7” was “RAC hp”). So it was working hard most of the time. The family car that my wife drives makes 250 hp, and that’s just an average family car these days.S o if you displace the Prius with an EV, you can get maybe a 2x efficiency gain. But if you displace a high performance vehicle that operates most of the time at low power settings, you can get a 10x efficiency gain. That’s the main reason that 18 wheelers aren’t a good target. They have powerful engines, but their power/weight ratio is very low (when fully loaded) and the engines work pretty hard. So in fuel per lb mile, they are pretty good already.”

To deal with this issue, Ian isn’t all about the all electric. He’s pushing plug-in electric hybrids. Electric motors powered off of batteries charged from the wall or with an onboard diesel generator. The generator also acts as a booster for those times when extra power is required. Hybrids are really good at solving these power vs. efficiency problems, since you can essentially design a system that can optimize for either performance or efficiency much easier than a straight gas or electric engine could.

Ian’s vision also addresses one of the long running achilles’ heels of electric cars – the lack of fueling infrastructure. Regardless of your feelings on the matter, it’s generally bad business to try and bet on an expensive infrastructure rollout. And if it means slower and lower uptake of fuel efficient vehicles, then calling for infrastructure change that’s not going to happen is bad for the environment, too.

That’s why I’ve been such a big fan of plug-in hybrids. We can have our cake and eat it too. It’s all about payback and plug-ins. And it’s good to see electric car gurus finally getting this message.

Neal Dikeman is a founding partner at Jane Capital Partners LLC, a boutique merchant bank advising strategic investors and startups in cleantech. He is founding contributor of Cleantech Blog, a Contributing Author for Inside Greentech, and a Contributing Editor to Alt Energy Stocks, and a blogger for CNET’s Green tech blog.

PG&E’s Clean Fleet and Visionary Future

By John Addison (8/21/07). Years ago, you only had one choice for your telephone service – AT&T. Now you have a variety of choices from landline, wireless, cable, and Internet providers. Years ago, gasoline was your only fuel choice. Now you have a number of fuel and electric choices. In the future, your favorite provider may be your electric and gas utility.

PG&E – Pacific Gas and Electric – (NYSE: PCG) provides electricity and natural gas to over 5 million customers in California. With revenues exceeding $12 billion, PG&E has an opportunity to increase its services as we continue the shift from vehicles with gasoline engines to vehicles using electric propulsion and alternate fuels.

When I met with a number of PG&E managers, Sven Thesen traveled from his Palo Alto home via bicycle and train, leaving his personal plug-in hybrid at home. Another traveled from his Alameda home via bicycle and ferry. Others used low-emission CNG and hybrid vehicles. The people managing PG&E’s clean transportation programs practice what they preach.

This article looks how PG&E runs a clean fleet, new programs for customers, and the exciting future potential of vehicle-to-grid (V2G).

Largest CNG Fleet in USA

As part of its larger environmental leadership strategy, PG&E owns and operates a clean fuel fleet of hybrid-electric and fuel cell vehicles, and more than 1,300 natural gas vehicles — the largest of its kind in the United States. PG&E’s clean fuel fleet consists of service and crew trucks, meter reader vehicles and pool cars that run either entirely on compressed natural gas or have bi-fuel capabilities. PG&E also has the largest fleet of Honda (HMC) Civic GX CNG cars.

Over the last 15 years, PG&E’s clean fuel fleet has displaced more than 3.4 million gallons of gasoline and diesel, and helped to avoid 6,000 tons of carbon dioxide from entering the atmosphere.

For any utility, Class 6/7 service trucks often need to idle their large diesel engines for hours in order to run heavy lifts and other equipment. As new lines are installed, customers complain of the vehicle noise keeping them awake at night. The maintenance crew is often forced to stop and start the engine so that they can shout between the ground person and the one in the air. The hybrid truck is especially valuable in neighborhoods with noise restriction laws.

Last week, I reviewed PG&E’s new hybrid service truck which already had over 6,000 miles of operation. Efrain Ornelas demonstrated the heavy lift and other accessories operating electrically with the engine off. In service, the vehicle is reducing diesel fuel use a dramatic 55% through regenerative braking on road, and engine-off electric operation during stationary work. The vehicle even included both 110 and 208V outlets for power tools.

At $3.00 per gallon for fuel, the potential savings ranges from $4,500 to $5,500 a year per vehicle. Each hybrid truck reduces greenhouse gas emissions an estimated two tons per year.

In addition to the dramatic diesel fuel savings, PG&E further reduces petroleum use and emissions by using B20 biodiesel. PG&E is increasing using B20 biodiesel with its entire diesel fleet.

“Hybrid-electric trucks are promising because of their potential to significantly reduce the use of petroleum-based fuel and help keep California’s air clean,” said Jill Egbert, manager, clean air transportation, PG&E. “We hope our involvement will lead to the accelerated development and mainstream acceptance of hybrids in our industry.”

PG&E is one of 14 utilities in the nation participating in the pilot truck program, sponsored by WestStart’s Hybrid Truck Users Forum (HTUF), a hybrid commercialization project bringing together truck fleet users, truck makers, technology companies, and the U.S. military, to field-test utility trucks with an integrated hybrid power-train solution.

This new Class 6/7 hybrid truck is built by International incorporating the Eaton (ETN) hybrid drive system with a 44kW electric motor. Eaton has produced more than 220 drive systems for medium and heavy hybrid-powered vehicles. Vehicle configurations include package delivery vans, medium-duty delivery trucks, beverage haulers, city buses and utility repair trucks – each of which has generated significant fuel economy gains and emission reductions.

PG&E sees a similar opportunity to save with its Class 5 trouble trucks. For this truck, PG&E partnered with the Electric Power Research Institute and other utilities to conduct a plug-in hybrid pilot project for a Ford F550 Super Duty Field Response Truck. PG&E currently has 350 Field Response Trucks on the road.

Cleaner Electricity

Some people are concerned that a shift to electric and plug-in hybrid vehicles will not reduce global warming. These people point to coal power plants producing electricity that goes into the vehicles. Because electric drive systems are typically 300% more efficient than gasoline engines, major emission reductions are achieved even from coal generated electricity.

PG&E provides much greater benefit, because it is eliminating coal power from its power mix. As a customer, my latest PG&E bill showed a reduction of coal from 38 to 2% of the power mix. In 2007, energy from RPS-eligible renewables is increasing to 12% of the delivered power mix, from 5% in 2005. Natural gas is 43%, nuclear 23%, and large hydroelectric is 17%.

By 2010, 20% of PG&E delivered electricity will be from clean renewable energy. A big part of the increase will be 553 MW of concentrating solar power (CSP) from a new Solel project. When fully operational in 2011, the Mojave Solar Park plant will cover up to 6,000 acres, or nine square miles in the Mojave Desert. The project will rely on 1.2 million mirrors and 317 miles of vacuum tubing to capture the desert sun’s heat. It will be the largest CSP project in the world.

PG&E is also expanding its use of wind, geothermal, large solar PV, and biomass energy.

Natural Gas and Hydrogen Stations

PG&E owns and operates 34 compressed natural gas (CNG) fueling stations, for its own fleet and more than 200 commercial and private fleets. This includes transit districts, private refuse haulers, school districts, municipalities, air/seaports, and other miscellaneous operators including taxi, package delivery, military, and private fleets. PG&E Clean Air Transportation Program

In addition, construction of a hydrogen fueling station in San Carlos, California is scheduled to begin. GTI will serve as a partner on the project, providing a mobile hydrogen unit (MHU) that uses GTI’s patented reformer technology. This self-contained unit will produce hydrogen from natural gas.

PG&E makes daily use of three Mercedes hydrogen fuel cell (F-Cell) vehicles. A variety of PG&E employees drive the vehicles including, fleet mechanics, inspectors, service planning representatives, project managers and officers.


A compelling idea for the future is to charge electric vehicles at night when electricity is cheap, and then buy the electricity from vehicles during peak hours. Some electric vehicles store enough electricity to power 50 homes. Sven Thesen at PG&E demonstrated spinning the meter backwards with their plug-in hybrid Prius with V2G. The Prius included a 9kWh plug-in kit from EnergyCS using Li-Ion batteries. A Sonny Boy power inverter, common in solar power installations, was used.

Today, utilities are powering vehicles with electricity, natural gas and hydrogen. In a few years, electric vehicles will also power homes with vehicle-to-home (V2H). Large batteries and fuel cells provide many times the electricity demand of a home. In a few more years, smart grids and intelligent power management will allow peak electricity demands to be met by utilities buying power from vehicles with vehicle-to-grid (V2G). U.C. Davis and PG&E have demonstrated V2H and V2G already.

With smart grid technology, customers could simply plug-in their vehicles to 110 volt outlets. At idle low-cost hours the vehicle would be timed to recharge. At peak hours, customers could agree to let the utility buy electricity at premium rates. In the future, expensive and polluting stand-by peaking generators could be eliminated with smart grid technology and V2G.

Leading the way to clean electricity and cleaner transportation are corporations like PG&E. In their own fleet they are proving that alt-fuels and electric drive systems can save money and emissions. As the technologies are proven, PG&E gives customers new ways to secure clean fuels and electric power.

John Addison publishes the Clean Fleet Report. Permission is granted to reproduce this article.

Muggles Perform Magic in California

By John Addison (7/30/07) Everyone is mesmerized with Harry Potter and the fate of the world. My niece proudly wears a wrist band proving that she waited seven hours to buy book seven. My brother, reported that 30% of passengers on his business flight were reading the book. Harry and his fellow wizards have access to all sorts of magical transportation – flying broomsticks, flying carpets, magical flying creatures, portkeys, floo powder and floo networks, metamorphosing, apparition and disapparation Muggles, we regular human non-wizards, are also capable of a bit of magic. In California, millions have been transported with zero emissions. Not with Knight Buses, but with zero-emission buses, light-rail, cable cars, and zero-emission cars.

The California Air Resources Board (ARB) adopted the Zero Emission Vehicle (ZEV) Regulation in 1990 to reduce the emissions from light-duty vehicles and accelerate development of zero emission vehicles. Over the years, the regulation has been modified to deal with objections and lawsuits from the automotive industry that contend that battery-electric and fuel-cell vehicles are not ready for prime time.

The regulation has made California the leader in clean vehicles and cleantech. Estimates are that by the end of 2005, the following quantities of these vehicles had been placed in California: 130 fuel cell, 4,400 battery-electric, 26,000 25-mile per hour speed battery-electric, 70,000 AT-PZEV vehicles such as the Prius, and 500,000 PZEV vehicles.

There are currently twenty-one auto manufacturers subject to the ZEV regulation. Six are defined as large volume manufacturers: Toyota (market leader), General Motors, Ford, Honda, DaimlerChrysler and Nissan. The remaining 15 are intermediate volume manufacturers. Intermediate manufacturers can meet the regulation entirely with PZEVs.

ARB staff recommends that “the Board examine more even treatment of BEVs in the regulation as compared to FCEVs. For example, BEVs and FCEVs could be offered equal credit before 2012. By returning to technology neutrality and considering BEVs and fuel cell vehicles similarly, the ARB might induce some manufacturers to choose to pursue battery electric vehicle development instead of fuel cell vehicle development. The outcome would be that overall ZEV production could be greater, but fewer fuel cell vehicles may be produced.”

ARB has been holding public hearings and getting an earful. The latest public workshop was on July 24. Leading environmental groups such as NRDC, UCS, and the American Lung Society do not want reductions in the fuel cell vehicle requirements.

The proposal to ARB which generated the most interest was from A123, a leading supplier for advanced lithium batteries. A123 has also purchased Hymotion to be the leading plug-in hybrid (PHEV) system integrator, winning important contracts from the State of New York and South Coast Air Quality Management District. A123 stated that they have been selected for GM VEU and Volt vehicle programs and are being considered by future PHEV programs from makers such as Volvo.

An A123 kit will fit in spare tire space of most hybrids including the Toyota Prius, Honda Civic Hybrid, and Ford Escape Hybrid. Kits and authorized installers are expected in 2008. The A123 presenter, for his own converted Prius has used only 9 gallons of gasoline to travel 1,200 miles. He achieves up to 177 miles per gallon.

There are now over 40 million light electric vehicles now in use worldwide. Demand is exploding in Asia. ARB is considering increasing its modest credit for 25-mile per hour neighborhood electric vehicles (NEV).

Because plug-in hybrids and light electric vehicles are in the regulation, California should have no need to relax other requirements. Rapid advancements have been made in both high-performance and low-cost battery electric vehicles. Hydrogen fuel cell vehicles (FCV) have demonstrated ranges of 300 miles, 24 stations are in operation, and there are enthusiastic responses from those who drive these FCV on a daily basis. Next year, over 40 PHEV will be on California’s roads.

Permission is granted to reproduce this article which is copyright John Addison. The complete article with links to the ZEV program is at John Addison publishes the Clean Fleet Report. He is currently inviting literary representation and a publisher for his new book Save Gas, Save the Planet.

Big Utilities vs. Big Oil

By John Addison (4/17/07) Question: What could be more American than healthy competition? Answer: Healthy competition that reduces our dependency on foreign oil. By 2010 you may be filling your “tank” by plugging-in to your electric and natural gas utility. Today fleets turn to utilities to power everything from light electric vehicles to heavy natural gas and hydrogen vehicles.

At the recent Alternative Fuels and Vehicles Institute (AVFi) National Conference, major utilities were there with exciting presentations and demonstrations. Major California utilities included Sempra Energy (SRE), Southern California Edison (EIX), and PG&E (PCG). Major automotive and truck manufacturers showed their latest alt-fuel vehicles. Globally there are over 30 million electric vehicles and over 5 million natural gas vehicles.

Vehicles give utilities added markets for electricity and natural gas, the opportunity to use excess off-peak electricity that is now wasted, and long-term opportunities to capture electricity from vehicles (V2G) when electricity is in peak demand.

Southern California Edison provides electricity to over 13 million customers. Edison’s Gordon Smith presented the ability for 70% of U.S. vehicles to be powered with off-peak electricity. Edison provides electricity to customers with thousands of electric vehicles, forklifts, sweepers, scrubbers, airport equipment, truck stop electrification, ship port electrification, and plug-in hybrids. Over 300 of Edison’s own fleet are electric vehicles. Some of its 240 Toyota RAV-4 EVs have achieved a life of up to 150,000 miles. Edison Programs

Running a utility requires large fleets including vans and trucks. Edison is aggressively testing hybrids and plug-in hybrids. SCE now is testing a DaimlerChrysler (DCX) plug-in hybrid-electric Sprinter vans with a 20 to 30-mile all-electric range through a partnership with the Electric Power Research Institute (EPRI), the South Coast Air Quality Management District and DaimlerChrysler.

SCE is partnering with EPRI, other utilities and Eaton Corporation (ETN) to establish a program for Class 5 plug-in hybrid troubleman trucks using the Ford (F) F550. They will offer the ability to drive in an all-electric mode, and to operate in a stationary mode (without idling). The electric mode is perfect for the hours that these trucks are used at work sites and when running hydraulic lifts. The electric mode eliminates emissions, fuel cost and noise.

SCE is also working with other fleet operators through the Hybrid Truck Users Forum to place prototype heavy-duty hybrid trucks in operation, with a goal of leading to production commitments and expanded purchases. Based on initial testing of the trucks at an independent facility, these vehicles are projected to cut air emissions by up to 50%, and use 40% to 60% less fuel, compared to similar diesel-powered trucks. These trucks are likely to become a standard Class 6 offering by International, using an Eaton hybrid drive system.

AVFi presented the “Industry Pioneer” award to the Southern California Gas Company, a Sempra utility. Sempra is the nation’s largest natural gas utility, serving 29 million customers. The Gas Company owns and operates a fleet of 1,100 natural gas vehicles. It operates 26 natural gas stations. It helped LAMTA create the world’s largest fleet of natural gas buses (over 2,200). LAMTA is also expanding into buses running on hydrogen blended with CNG and battery-electric buses.

PG&E provides electricity and natural gas to over 5 million customers in California. With revenues exceeding $12 billion, PG&E has an opportunity to increase revenues one billion dollars if there is a shift from vehicles with gasoline engines to vehicles using electric propulsion.

As part of its larger environmental leadership strategy, PG&E owns and operates a clean fuel fleet of electric and fuel cell vehicles, and more than 1,100 natural gas vehicles. PG&E’s clean fuel fleet consists of service and crew trucks, meter reader vehicles and pool cars that run either entirely on compressed natural gas or have bi-fuel capabilities. Over the last 15 years, PG&E’s clean fuel fleet has displaced over 2.7 million gallons of gasoline and diesel, and helped to avoid 5,000 tons of carbon dioxide from entering the atmosphere.

PG&E is actively field testing both battery electric vehicles (BEV) and plug-in hybrid vehicles (PHEV).

PG&E has ordered four Phoenix Motorcars ( all-electric sport utility trucks (SUTs) for June delivery. PG&E has given Phoenix a conditional order to buy 200. The Phoenix trucks have an impressive 130 mile range using Altair Nano (OTCBB: ALTI) batteries with their unique lithium titanate spinel oxide (LTO) electrode materials. Both Phoenix and Altair were on display at the AFVi Conference. Altair has claimed a breakthrough in several areas: specific power, battery life of over 10,000 charge cycles, “zero explosions and safety issues” test results, and fast charge capability. Altair Nano Batteries:

“PG&E is firmly committed to reducing our carbon foot print by using innovative alternative-fuel technologies,” said Bob Howard, PG&E vice president of gas transmission and distribution. “By adding the Phoenix Motorcars SUTs to our leading clean fuel fleet, we are taking an important step in developing a proven and necessary electric vehicle market. Electric vehicles provide a practical solution to help us reduce our dependency on petroleum-based fuels, keep California’s air clean, and meet the challenges associated with climate change.” PG&E News

Along with Edison, PG&E’s fleet was one of 14 in the country chosen to test the plug-in hybrid pilot project for a Ford F550 Super Duty Field Response Truck. PG&E currently has 350 Field Response Trucks on the road. PG&E, partnering with the Bay Area Air Quality Management District, also recently placed into service a prototype Plug-in Toyota Prius to demonstrate the benefits of light-duty plug-in hybrid vehicles.

PG&E owns and operates 34 compressed natural gas (CNG) fueling stations, through which they supply natural gas to more than 200 commercial and private fleets throughout the PG&E system. This includes transit districts, private refuse haulers, school districts, municipalities, air/seaports, and other miscellaneous operators including taxi, package delivery, military, and private fleets.

Construction of a hydrogen fueling station in San Carlos, California is also scheduled to begin this summer. Pacific Gas and Electric Company (PG&E) was awarded a California Air Resources Board (CARB) grant for the project. GTI will serve as a partner on the project, providing a mobile hydrogen unit (MHU) that uses GTI’s patented reformer technology. This self-contained unit will produce hydrogen from natural gas and condition it to serve the on-site dispenser during the development of a hydrogen fueling network in California. The hydrogen fueling station will be co-located with a publicly accessible compressed natural gas station to allow for 24/7 availability. Once sufficient demand is established, the MHU can be replaced with permanent facilities, and the unit can then be relocated.

The relationship between big oil and big utilities are complex. Oil refineries are among the world’s largest users of electricity. Oil companies are transforming into integrated energy providers that sell large quantities of natural gas to major utilities, making the utility a distribution channel for the natural gas producer. Some energy giants are expanding into wind, solar and other renewable energy.

Edison and BP have a joint venture to build a large scale electric plant that will not run on coal, not on nuclear, not on natural gas. The Carson plant will run on hydrogen and output 500 MW of electricity. By products will include enough hydrogen to inexpensively fuel thousands of vehicles in Southern California. Another byproduct will be CO2 that will be sequestered as part of increasing oil production. Hydrogen power plant details:

Edison also has an existing hydrogen fueling station in partnership with Chevron.

Currently, fleets are taking the lead with electric vehicles and plug-in hybrids that are developed by system integrators and specialty companies. DaimlerChrysler was at the AVFI conference with its 25 mph GEM. 40,000 have been sold. Rumors are flying that in 2008 Toyota (NYSE:TM) will begin fleet tests of its new plug-in hybrid using lithium batteries. Consumer sales may start in 2009. By 2010, Mitsubishi (MSBHY) will start selling an EV to consumers in Japan. Drivers will increasingly use electric power.

Today, utilities are powering vehicles with electricity, natural gas and hydrogen. In a few years, electric vehicles will also power homes with vehicle-to-home (V2H). Large batteries and fuel cells provide many times the electricity demand of a home. In a few more years, smart grids and intelligent power management will allow peak electricity demands to be met by utilities buying power from vehicles with vehicle-to-grid (V2G). U.C. Davis and PG&E have demonstrated V2H and V2G already.

Healthy competition is leading America to cleaner electricity and cleaner vehicles. Innovative utilities are taking an important role in the transition.

John Addison is the author of the upcoming book Save Gas, Save the Planet and publishes the Clean Fleet Report http:// This article is copyright John Addison with permission to publish or excerpt with attribution. John owns stock in ALTI.

Could Solvent-Free Manufacturing Technology Help Make Lithium Polymer Batteries a Reality?

I had a chance to chat with Dr. Klaus Brandt, EVP of Lithium Technology Corporation (Ticker symbol LTHU.PK). LTC has been in the business of Lion battery development for over 10 years. They are focused on large energy content / high power applications, primarily using lithium polymer technologies.

The Company was formed 4 years ago through a merger of a German battery startup called and LTC. Dr. Brandt is the Executive Vice President of LTC and Managing Director of their GAIA GmbH subsidiary, joining GAIA in April, 2005. A 25 year battery industry veteran, Gaia is his 5th battery company. He previously worked for Duracell (US) and VARTA (Germany), Moli Energy & Ionity. He holds a PhD, Physics from Tech Inst of Munich.

They haven’t disclosed much on their customers, but are focused on the military markets (especially for unmanned vehicles, like UAVs, they have one announced participation with Phoenix), and in niche industrial markets like robotics. The holy grail opportunity, of course is the EV, HEV and Plug-in hybrid automotive markets, where LiOn technology has an opportunity to displace NiMh, if it can drive costs down far enough. So far LTC has been working on early demonstrator projects in this area, but doesn’t appear to have hit the big one yet.

A quote from a recent press release on some of LTC’s activities in the plug-in hybrid sector.

“LTC has powered a project in conjunction with Innosys Engineering in which a four passenger Daihatsu Cuore was converted into an electric car using the lithium-ion batteries and a three-phase asynchronous electric motor. The battery, built with cells manufactured by LTC subsidiary GAIA, has a capacity of 25 kWh and an approximate highway range of 180-200km (100-125 miles) at 90-100km/hr (56-60 mph). These results are similar to the expected performance of the recently announced Volt slated to be made available by General Motors in 2010. “The technology is here today. LTC has it, and we’ve demonstrated it,” says Dr. Brandt. “Price is the biggest factor holding back the production of these more environmentally friendly, fuel efficient vehicles. By committing to work together, the auto manufactures and battery companies can bring the cost down and make cars like the Volt an affordable reality for the consumer.” LTC’s technology was recently highlighted in a video produced by Plug-In Partners, a national grass-roots initiative to demonstrate to automakers that a market for flexible-fuel PHEVs exists today. The full video discussing the economic and environmental benefits of PHEVs can be viewed on the Plug-In Partners website.

The piece featured a project in which LTC provided cells to the University of California, Davis Hybrid Electric Vehicle Group for the conversion of a Chevy Equinox to a PHEV as part of the Challenge X: Crossover to Sustainable Mobility engineering competition. The lithium-ion battery has the same capacity as the original metal hydride battery but with half the weight. The battery can be charged by either the internal combustion engine (ICE) or a standard AC household electrical socket and can drive over 40 miles on the overnight electrical charge. The converted vehicle has a fuel economy of 36 mpg in the city, and 38 mpg on the highway, as compared to the original Chevy Equinox range of 19 mpg city and 25 mpg highway.”

As a result of the merger with Gaia, Arch Hill Ventures, NV, the venture capital firm behind Gaia, now has a dominant stake in the company. I couldn’t find much information on Arch easily available, though.

The company trades over the counter in the US, and has struggled financially (revenues are around $2 mm/year), and it loses money, and the stock price for the last several years has reflected this. Of course, it doesn’t help that the company doesn’t seem to have filed a 10-K or 10-Q since May of 2006. In December the company earned a reprieve raised $3 mm in a Series C Preferred Stock at a valuation on the order of $23 mm, and converted about $2.4 mm in debt.

In Germany the company is manufacturing cylindrical cells, and packaging them into batteries, and doing some prod development, along with EU sales. In the US Dr. Bradnt says they do a limited production of flat cells, the US sales and marketing, as well engineering and assembly of batteries for American customers.

But aside from all that, I asked Dr. Brandt to give me a summary walk through of the technology, what makes it neat, and what the cost and performance advantages are.

The brief from their website:

“LTC’s unique technology allows for the production of very large cells with a high capacity and high power capability.

LTC’s wholly owed affiliate GAIA Akkumulatorenwerke in Nordhausen, Germany employs a unique patented extrusion process for producing electrodes for lithium ion cells. This process is environmentally friendly (no solvent) and eliminates the need for expensive explosion proof coating and solvent recovery equipment. Using high speed winding and a unique assembly technology, large cylindrical cells are manufactured. In our Plymouth Meeting facility, we have the capability to build large footprint flat cells and stack them to form large batteries. Our proprietary technology includes critical composition, processing, and packaging aspects of the battery. Our coating, lamination and extrusion know-how enables us to achieve uniformity and consistency through a range of application techniques. Batteries for the consumer, transportation, and industrial markets require different electro-chemical systems that we believe can be easily accommodated by our extrusion process.”

According to my conversation with Dr. Brandt, LTC has two core technologies. The first is this extrusion process for a part of the cell manufacturing for either LiOn or Lithium Polymer batteries. The uniqueness is a way to avoid the use of large amounts of solvents in the process of manufacturing electrodes from electrode powders.

Normally, you make electrodes by a coating process. Taking electrode powders and mixing them in an organic solvent with has a binder and any additives dissolved in it. This results in a fairly viscous slurry with typically more than half organic solvents . Then battery manufacturers typically use a coating process (usually a printing type roller process or some sort of foil through narrow slit, controlling deposition quality mechanically) to coat the slurry onto a current collector, usually a thin metal foil, and in a post process step heat the electrode to evaporate the solvent, which by volume is often greater than the active material.
Typically the make-up of the solvents used is key intellectual property for the battery manufacturer, but most are highly volatile and toxic chemicals, and need to be recycled in some sort of a closed loop system that is generally equipment and energy intensive (read costly, and not very green).

The LTC process is different. LTC runs an extrusion process as follows – make the electrode powders into mixture of powder materials directly with a special polymer binder, which flows under some pressure and temperature, and extrude the mixture into a film sheet. The process runs in the range from 200-300F up to 350-400F, and uses off the shelf plastic extrusion equipment. As second step, LTC then laminates the film to the foil. The lamination allows good control of all kinds of properties. The whole thing is roughly similar to low temperature polymer membrane construction process.

The trick is the mix of the polymers. If mix isn’t right you can’t keep mechanical consistency or can’t control thickness of the film and uniform distribution of the components. The polymer mix also affects the binding properties.

They claim the process does not really affect the cell manufacturing or the electrolyte relative to other processes. And Dr. Brandt says it has applicability for lithium ion as well as lithium polymer.

The advantage – no solvent extraction, cleaning, and recycling process equipment, and reduced energy use. Basically a more efficient, greener, cleaner process. LTC estimates their process can reduce a cost structure on the order of 5-10% improvement over conventional technology, a big improvement in battery manufacturing techniques.

The main challenges are those similar to all lithium ion and lithium polymer battery manufacturers. In the area of automotive and HEVs, they need to address cost. Scale of production is obviously a main cost down concern for LTC at this point, but materials costs are a close second. Like all lithium polymer technologies, the materials in general are still quite high.

On the performance side, Dr. Brandt walked through another interesting technology development.

They are able to build relatively large systems at a similar power density and power rate to smaller systems compared to other manufacturers, especially useful in areas like submarine and UAV batteries.

They also get high power and excellent charge/discharge rates – on some cell types up to 80% of the energy in 2 – 3 minutes.

The trick here is LTC’s technology to manage the thermal issues in the way they make the electrical connections between electrodes and terminals in the wound cells. LTC essentially makes electrical connections at every turn of a wound cell, directly connecting each cell to the terminal, using massive (relatively) terminals. They do it with a special trick they have developed to easily allow a large number of the multiple connections.

All in all, a fascinating story. One I will have to follow closely and see how well the company pulls through its recent financial straits.

Author Neal Dikeman is a founding partner at Jane Capital Partners LLC, a boutique merchant bank advising strategic investors and startups in cleantech. He is the founding contributor of Cleantech Blog, and a Contributing Editor to