Chinese Food For Thought

As I posted a few years ago, so many of the best opportunities for cleantech to have immediate benefit can be found in China.

Every day, evidence accumulates supporting this thesis.  Of course, this winter’s air pollution crises in Beijing and other cities made global news.  More gruesome was last week’s discovery of nearly 7,000 dead pigs floating in a river outside Shanghai.

The true extent of environmental abominations in China is unknown.  As this article indicates, the Chinese government guards a substantial body of data about environmental quality — and the Chinese citizens are getting increasingly angry about what they know they don’t know.

To the extent that there is good news to report, it is that China has clearly become a prime destination market for clean technologies to penetrate.

The Pew Charitable Trusts commissioned a recently-released study by Bloomberg New Energy Finance indicating that the balance of trade between the U.S. and China on three key segments of cleantech — wind, solar and smart grid — actually tilts more to China than from China.  This finding conflicts with conventional wisdom, which holds that cleantech exports from China to the U.S. must be dominating the balance of trade, as illustrated by the widespread evidence of Chinese companies dumping low-cost solar panels onto U.S. markets.

For years, knowing how vast the opportunity is, I’ve been trying to figure out how to better facilitate promising clean technologies in entering China to make a big environmental impact (and, of course, do well commercially and financially in doing so).   Of course, I’m not alone, and others have acted while I pondered:  organizations such as JUCCCE and the US-China Clean Tech Center have arisen in the past few years to offer their services.  I guess they’ve been able figure out what I couldn’t:  a clear strategy and compelling business model for serving as a conduit for cleantech dissemination into China from outside China.

Stunning Cleantech 2012

It’s been a busy, ummm interesting year.  We’ve tracked profits to founders and investors of $14 Billion in major global IPOs on US  exchanges and $9 Billion in major global M&A exits from venture backed cleantech companies in the last 7-10 years.  Money is being made.  A lot of money.  But wow, not where you’d imagine it.

5 Stunners:

  • Recurrent Energy, bought by Sharp Solar for $305 mm, now on the block by Sharp Solar for $321 mm.  Can we say, what we have here gentlemen, is a failure to integrate?  This was one of the best exits in the sector.
  • Solyndra Sues Chinese solar companies for anti-trust, blaming in part their subsidized loans????????  Did the lawyers miss the whole Solyndra DOE Loan Guarantee part?  It kind of made the papers.
  • A123, announced bought / bailed out by Chinese manufacturer a month ago, now going chapter bankruptcy and debtor in possession from virtually the only US lithium ion battery competitor Johnson Controls?
  • MiaSole, one of the original thin film companies, 9 figure valuation and a $55 mm raise not too long ago (measure in months), cumulative c $400 million in the deal, sold for $30 mm to Chinese Hanergy just a few months later.  (Not that this wasn’t called over and over again by industry analysts.)
  • Solar City files for IPO, finally!


My call for the 5 highest risk mega stunners yet to come:

  • Better Place – Ummmmmmmmmm.  Sorry it makes me cringe to even discuss.  Just think through a breakeven analysis on this one.
  • Solar City – a terrifically neat company, and one that has never had a challenge driving revenues, margin, on the other hand . . .
  • BrightSource – see our earlier blog
  • Kior – again, see our prior comments.  Refining is hard.
  •  Tesla – Currently carrying the day in cleantech exit returns, I’m just really really really struggling to see the combination or sales growth, ontime deliveries, and margins here needed to justify valuation.

I’m not denigrating the investors or teams who made these bets.  Our thesis has been in cleantech, the business is there, but risk is getting mispriced on a grand scale, and the ante up to play the game is huge.


San Diego’s Smart Grid

I have to admit:  it’s hard for me to be terribly enthusiastic about electric utilities.  I know a fair bit about them; by my count, I’ve served about ten utilities in various consulting roles during my career.

While generalizations are always dangerous, for the most part, I think it’s safe to say that electric utilities can be characterized as highly protective of the status quo.  Utility executives and employees are typically competent, and take their mission for “keeping the lights on” very seriously, but they tend to be averse to change — the opposite of visionary.

For those of us who are trying to forge a new and better future, who see the eventual emergence of new and more environmentally-friendly technologies as natural and unstoppable as water flowing downstream, utilities can be large boulders in the river.

So it was with some skepticism that I began reading a couple of recent articles about the technology deployment efforts of San Diego Gas & Electric (SDG&E), an operating unit of the utility holding company Sempra Energy (NYSE: SRE).

In August, Power presented its 2012 Smart Grid Award to SDG&E, largely for its smart grid deployment plan (SGDP), which (in its own words) “empowers customers, increases renewable generation, integrates plug-in electric vehicles (PEVs) and reduces greenhouse gas emissions while maintaining and improving system reliability, operational efficiency, security and customer privacy.”

With this plan, SDG&E is aiming to enable a “smart customer” that is able to make more choices and have more control over energy decisions, a “smart utility” that manages a host of ever-advancing supply- and demand-side resources and the grid that integrates the two, and a “smart market” for customers and energy suppliers that preserves power quality and reliability on the grid while increasing price transparency.

In a separate article in EnergyBiz, a Q&A with SDG&E’s President & COO Michael Niggli reveals how extensive the SGDP roll-out has already been in San Diego.  All customer meters — 1.4 million electric, 850,000 gas — have been upgraded.  18,000 rooftop solar units totaling 138 megawatts (3% of peak demand) have been installed.  1600 PEVs are driving around town and plugging-in at various charging stations, bringing new meaning to the phrase “San Diego chargers”.

On top of this, a host of other less-visible advancements — extensive deployment of updated SCADA systems, weather sensors, wireless communications infrastructure — are bringing the grid in San Diego out of the 20th Century to the 21st Century.

All of this will help SDG&E meet the goal of supplying 33% electricity of its electricity from renewable (mostly intermittent) sources while also accommodating potentially 200,000 PEVs by 2020 — which would be difficult if not impossible to achieve without advanced technologies such as those being deployed as part of the SGDP.

As impressive as this all is — and kudos to SDG&E for their accomplishments — it should be noted that San Diego citizens and California regulators were critical to this outcome.  SDG&E may have rolled out the SGDP effectively, but they may not have developed the plan at all unless there was strong push and pull from outside forces.

San Diego residents have been very proactive in installing new renewable and efficiency technologies in their homes, and have been actively seeking engagement with SDG&E on how to get the most benefit from them.  In Sacramento, California”s ambitious set of energy policies — a renewable portfolio standard (RPS), greenhouse gas reduction legislation (AB32), distributed generation goals, demand response mandates, and improved building and appliance efficiency standards — made it untenable for SDG&E to stand still with aging equipment based on decades-old technologies.

Lacking these external forces, I doubt that SDG&E would have made anywhere near as much progress in the smart grid and wouldn’t be far ahead of most other U.S. utilities, who do generally lack these forces.

The moral of the story is that electric utilities, as regulated companies, are reactive rather than proactive.  SDG&E should be applauded for being highly responsive, but let’s not confuse that with being visionary.  Indeed, it’s naive and maybe even unreasonable to expect utilities to be visionary.  All we, as cleantech advocates can do, to “get” utilities to “get it” is to ensure that there’s enough outside pressure for them to “get it”.

If more places across the U.S. were more like San Diego, the transition to the cleantech economy would probably be further along than it is.

Fifty Years

Earlier this month, I turned 50 years old.  Such milestones are natural occasions for reflection.

Beyond recalling many of the phases and individual episodes of my life, my reflection included a consideration of how the world had changed in the 50 years in which I had lived.  And, naturally, given my profession, I pondered what it would have been like to have been a “cleantech” practicioner 50 years ago, in 1962.

Frankly, it’s not really possible to imagine “cleantech” back then.  50 years ago, there wasn’t much “clean” and there wasn’t much “tech”.

In the U.S., the Clean Air Act and the Clean Water Act hadn’t been passed, and there wasn’t even an Environmental Protection Agency.  Silicon Valley was still mainly apple orchards, and computers less powerful than your smartphone barely fit into large warehouses.

In the energy sector, the U.S. still dominated the petroleum industry.  Not only did Americans consume more petroleum than anyone else (accounting for about 40% of world demand), U.S. oil production was still a major factor, representing almost 30% of worldwide production.

The oil industry’s operations would still have been very recognizable by John D. Rockefeller:  production was mainly from “conventional” onshore seesaw pumpers dotting the countryside; remote locations such as Alaska hadn’t yet been touched, nor had any material production yet been achieved from offshore wells.

Other than perhaps by watching the recently-released “Lawrence of Arabia”, few Americans paid much attention to the deserts of the Middle East in 1962.

Though unnoticed by most Americans, important forces in the oil industry were already beginning to shift in the early 1960s.  Although Texas oil production had been decisive in fueling the Allied victory in World War II just two decades previously, by 1962, the U.S. had become a net importer of oil.  Yet, only King Hubbert projected a future waning of American supremacy in oil production.

Oil prices in 1962 were a little less than $3/barrel, largely due to the price-setting powers of the Railroad Commission (RRC) of Texas, then still the source of a significant share of world oil production.  When a hitherto little-noticed group formed in the early 1960s called the Organization of the Petroleum Exporting Countries (OPEC) assumed the dominant influence in pricing oil a decade later, the world would change forever, as oil prices would never again be anywhere near below $10/barrel.

It’s almost quaint to summon up memories of the oil sector of the era.  Remember what filling up at a gas station was like in the 1960s?  The attendant would come out, put the nozzle in the tank (always with the filler behind the rear license plate), cheerfully wipe the windshield and ask “may I check your oil?”.  Looking out the window, I remember seeing “29.9” on the gas pumps.  That’s 29.9 cents per gallon — which seems almost surreal to us now, but remember, oil prices were then only a few percent of what they are today.

Of course, given the now-unbelievably appalling gas mileage of those Detroit beasts, usually under 10 miles per gallon, you still had to fill up about as often then as you do now.  Back then, it was all about horsepower — it certainly wasn’t about efficiency, nor about cleanliness.  (Nor, for that matter, reliability.)

Every once in awhile these days, I find myself behind a 1960s-vintage car at a stoplight, most often on a sunny summer afternoon.  When the light turns green, I am left in a thin cloud of light bluish smoke and the fragrance of octane and unburned hydrocarbons.  Odors of my youth.  You don’t see and smell that anymore — and I don’t miss it.

Thank goodness for a plethora of cleantech innovation during the past decades:  unleaded fuels, pollution controls and fuel injection systems.

And, let’s not forget that these advances were pushed by, only happened because of, foresightful proactive policies.

While the financial bonanzas and corporate/family dramas enabled by oil discoveries and production had thoroughly captured the American imagination by the early 1960s — consider everything from “Giant” to “The Beverly Hillbillies” — natural gas in 1962 was an afterthought.  Other than some use for power generation in Texas and Oklahoma (where there was no local coal resource), natural gas was mostly flared at the wellhead.  In many ways because (and many people now forget this) natural gas prices were then regulated at depressed levels, the companies that produced gas as a side-consequence from oil production didn’t see much value in making the investments necessary to collect it and transport it to markets.  In fact, natural gas was widely considered a nuisance in 1962.

Certainly, gas is no longer considered a nuisance.  In fact, it’s now being touted by politicians across the U.S. as the Godsend:  providing lower energy prices, lower emissions, higher domestic employment and reduced dependence on foreign energy sources.

No, the oil/gas industry — and those two fuels are today inextricably intertwined — is now much more aggressive in capturing and processing every Btu that courses through the markets.

In the late 1960s, our family lived in the Philadelphia area, and I remember being awed – almost scared, really – by the immense flames emitted by the refinery near the mouth of the Schuylkill River.  All those now-valuable hydrocarbons…gone, wasted, up in smoke.  You don’t see that anymore at refineries, thankfully.

Oil company practices have massively changed in the past 50 years to capture everything of possible economic value.  Of course, that’s the effect of a 30x increase in oil prices, driven by a worldwide search and race to find and produce new reserves to replace five decades’ worth of depletion of much of the cheap/easy stuff in the face of a tripling of global oil demand (mostly from outside the U.S.), counterbalanced by technological progress on a host of fronts over the span of five decades.

Today, oil is pretty consistently trading between $80-100/barrel, and while U.S. oil production has rebounded a bit to approach early 1960s levels, American production now accounts for less than 10% of world oil production.

But think about how low U.S. oil production would be and how high oil prices might be today if not for offshore oil production, directional drilling, 3-D seismic, and an untold number of other innovations produced by the oil patch in the last half-century to enable production from hitherto undeveloped places.

Of course, beauty is in the eye of the beholder, and not all of these developments are viewed positively by everyone.  The current debates about fracking and development of the Alberta oil sands would have been unimaginable in 1962.  At the time, fracking barely existed as a practice, and the Alberta oil sands were then hopelessly uneconomic as a source of fuels.  Moreover, there was virtually no environmental movement to give voice to the concerns of citizens.

It wasn’t really until Rachel Carson published Silent Spring just a few weeks after I was born that much attention was paid to pollution.  Later in the decade and into the 1970s came the grassroots emergence of the environmental groups, such as Greenpeace and the Natural Resources Defense Council.

If you are about my age or older, you may well remember this 1971 commercial.  The tagline (“People start pollution, people can stop it”) and the image of the Native American shedding a tear remain indelible decades later.

Before this, there was virtually no accountability placed on emitters, and anyone could pretty much dump whatever they wanted, wherever they wanted, whenever they wanted.  And, in the early 1960s, no set of interests benefitted from ongoing inattention to environmental considerations in the U.S. more than the coal sector.  For those with coal interests, the times before environmentalists were truly the glory days — and in 1962, the future for coal in the U.S. at that time was terrifically bright.

Sure, trains had just moved from coal steam to diesel-electric, but over half of all the electricity generated in the U.S. in 1962 was based on burning coal.  With burgeoning demand for electricity (especially to keep pace with the exploding utilization of increasingly-ubiquitous air conditioning), coal was poised for significant growth, as thousands of megawatts of new coal powerplants would be added to the nation’s energy grid each year during the 1960s.

While coal is certainly no poster-child for the cleantech sector today, back in 1962, coal remained a particularly brutish and nasty form of energy.  288 American miners were killed on the job in 1962, and all of the coal burned was subject to minimal pollution control – no electrostatic precipitators or baghouses to capture particulates (i.e., soot), much less scrubbers for sulfur dioxide or selective catalytic reduction for nitrogen oxide emissions.  You pretty much didn’t want to be a coal miner or live anywhere near a coal-burning powerplant, as your health and longevity were seriously at risk.

Indeed, some observers speculate that the uncontrolled emissions from powerplants (not to mention other industrial facilities, such as steel mills) threw up such large amounts of material into the atmosphere that the 1970s became a period of unusually cold temperatures — to the point that many scientists were projecting a future of damaging global cooling.  (Although the then-common theory of global cooling is now mainly forgotten, climate change deniers are quick to employ this prior dead-end of thought as one reason for dismissing the strong likelihood suggested by climate scientists that global warming is probably occurring today.)

Of course, the U.S. still mines coal, lots of it, to fuel lots of coal-fired powerplants.  Production in 2011 was 1.1 billion tons, more than double 1962 levels.  However, employment in the coal industry had fallen by over 40% during the same period.  (And, mercifully, annual fatalities have decreased by a factor of 10.)  The primary factors for these changes:  productivity increases due to new technologies (e.g., longwall mining), lower rates of unionization, and a shift from underground to surface mining (now accounting for nearly 70% of U.S. production).

With respect to the latter factor, Wyoming coal activity has exploded — now representing more than 40% of U.S. production — at the expense of Appalachia, whose coal sector is now but a shell of what it was 50 years ago.  The causes are simple:  the subbituminous Powder River stuff from Wyoming is much more abundant and cheaper to mine, and generally has much lower sulfur content to boot, than what is available from Appalachia.

On a broader level, coal is on the retreat in the U.S.:  while coal still accounts for almost 50% of power generation, this share is dwindling.  It seems as though U.S. coal production levels have plateaued at just over 1 billion tons a year.  While so-called “clean-coal” technologies may at some point provide the basis for a resurgence in the industry, the possibility of future growth certainly seems far from obvious today.

Many legacy coal powerplants – some of which remain in operation from well more than 50 years ago – are fading away.  Tightening emission requirements, particularly on toxic emissions such as mercury, are just one  competitive disadvantage facing coal; coal power is increasingly uncompetitive with cheap and cleaner natural gas powerplants and (in some places) wind and solar energy.

“Wind energy” and “solar energy”:  50 years ago, these would have been oxymorons.  Other than the minute niches of sailboats and waterwell pumping in the Great Plains, a good wind resource had virtually no commercial value in 1962.  At the same time, Bell Labs scientists were wrangling some with solar energy technologies — primarily for satellites – although a lot more attention was being paid to a related device called the semiconductor.

For energy, scientists were mainly working on nuclear power, moving from weapons and Navy submarines to powerplants.  The nuclear era was dawning:  electricity was going to be “too cheap to meter”.

The very first commercial nuclear powerplant, the relatively puny 60 megawatt plant at Shippingport in Western Pennsylvania, had been running for only a few years in 1962, though dozens of nuclear powerplants were just coming onto the drawing boards.  Visionaries were even talking about nuclear-powered automobiles in 1962.  (“Electric vehicles?  Puh-lease.  Batteries are for cheap portable Japanese radios.”)

Perhaps as a psychological defense mechanism to drown out the anxieties associated with potential Armeggedon from a Cold War missile exchange, such was the sense of optimism in the possibilities of the age.

Apparently, no-one could foresee Three Mile Island, Chernobyl or Fukushima at the time.

The future held boundless possibilities.  Back then, who needed to recycle?  To think about efficient utilization of resources?  To care about water quality or air quality?  There was always more and better, somewhere, to be had.  And we Americans would surely obtain it, somehow and someway.  It was Manifest Destiny, ever-onward.

This American philosophy may have confronted its limits early in my lifetime with the ultimate realization, brought home so vividly at the end of the 1960s by the first-ever images of the solitary Earth as provided by the Apollo program, that we’re all utterly dependent upon a finite planet in an infinite sea of otherwise-unpopulable space.  Earth Day followed in April 1970.

To commemorate this first Earth Day, I remember our second-grade class picking up scads of litter along the side of a section of highway.  Upon reflection, I am glad to note how much litter has declined in subsequent years — a case of how values can be reshaped and behaviors can be changed, if people are just a bit more conscious.

That’s a positive take.  However, one can reasonably look back on 50 years of the evolution of the energy sector and say, well, that not that much has really changed in America.

True, the basic structure of American life may not have changed too dramatically.

We still primarily live in single family dwellings, in suburbia, dependent upon cars that look more or less the same, fueled by gasoline available at stations just down the road.  The power grid is still there, powered by central-station powerplants; the light switches and outlets haven’t changed, with refrigerators still in every kitchen and TVs in every living space.

By all measures, Americans are still energy hogs, relative to the rest of the world.

Even so, I would assert that a lot has changed, at both the macro and micro-level, that have consequentially altered the trajectory of resource utilization in America from the path determinedly being travelled 50 years ago.

Admittedly, some of the changes we have experienced are a bummer:  niceties like summer evenings with the windows open are much rarer.  Nevertheless, I claim that most of the changes of the past half-century are positive – and can be attributed to a significant degree to what we now call “cleantech”.

Our energy bounty, improved so significantly by technological innovation, has been achieved while simultaneously improving environmental conditions in almost every respect.  Notwithstanding the substantial increase in carbon dioxide emissions, almost all other manifestations of environmental impact from energy production and use have dramatically improved in the past half-century.  Standards of living enabled by modern energy use, here in America and even more so in the rest of the world, have dramatically improved.

Moreover, the trends for further future improvement on all these fronts are favorable.

With the proliferation of improved technologies such as LED lighting, energy efficiency continues to advance.  Renewable energy continues to gain share:  wind and solar energy represented about a quarter of new U.S. electricity generation additions in 2010.  Citizen understanding of energy and environmental issues continues to become more sophisticated.

Beyond the forces specifically pertaining to the energy sector, a number of broader influences in U.S. society are improving the prospects for accelerating cleantech innovation and adoption.  Entrepreneurship is booming, consumerism is increasingly being called into question, capital markets are more amenable to investment in this sector and more capital is arriving accordingly, and the Internet makes an immense and ever-expanding pool of information freely available to enable better decisions.

Not to mention:  much of the opposition to a transition to the cleantech future emanates from people in generations that are older, that will die out in the next couple of decades, to be replaced by younger generations that are generally more supportive of increased cleantech activity.

So, while it’s easy to get discouraged by the impediments to cleantech progress on a day-to-day basis, over the long-view, it’s pretty apparent that big positive things can happen and in fact are happening.

50 years from now, in 2062, I hope to be alive and well at 100 and still contributing to the cleantech sector.  That may be overoptimistic.  But I don’t think it’s at all overoptimistic that we’ll see more changes, and more changes for the better, in the cleantech realm over the next 50 years than in the previous 50.

Holy Grail 12.0: Is Our Quest At Its End?

I’ve been working with new energy inventions and their creators for almost 15 years now.  I don’t know how many times I’ve heard a new technology described as “the Holy Grail”:  solving all of the world’s problems forever.

Well, here’s the newest one using the Holy Grail cliche:  a supposedly carbon-neutral method of using microbes to convert electricity into natural gas.

Thanks to an article written by Brita Belli of Ecomagination at GE (NYSE: GE), I was pointed to the recently-reported work of a team of researchers led by Alfred Spormann at Stanford University and Bruce Logan of Penn State University.  These researchers have determined that an organism called Methanobacterium palustre, when submerged in water on an electrically-charged cathode, will produce methane (i.e., natural gas, CH4) — supposedly at an 80% efficiency rate.

The carbon-neutrality of this approach stems from (1) using surplus electricity generation from non-emitting wind or solar and (2) the microbe extracts the carbon atom for the methane from the CO2 in the atmosphere.

So, in theory, one can make an infinite supply of a relatively clean fossil-fuel from renewable electricity by sucking carbon out of the air.  And, given the extensive natural gas pipeline, storage and distribution network, this fuel could be used for baseload power generation, traditional space/water heating and cooking purposes, and even transportation (e.g., natural gas vehicles).

The catch:  as is often the case with early discoveries in university labs, the researchers don’t know how to scale the technology and achieve consistent/stable results at commercially-useful levels.  The economics are also highly uncertain.

Don’t hold your breath.  This type of invention could take a very very long time to turn into something that’s viable for the energy marketplace.  As a long-time executive from one of the supermajors once said to me, it takes 12-24 months to really prove something at the next order of magnitude — and in energy, it’s usually several orders of magnitudes of expansion from the laboratory to the field.  Thus, what seems like an overnight success story usually has a decade or more of development behind it.

So, while this discovery might turn out to be the Holy Grail — and it definitely seems worth monitoring — one should not get too excited just yet.  There are a lot of potential hurdles to be overcome, and some of them may not be surmounted.  Even if the technology develops favorably, it’s a long way from being ready for prime-time.

In the meantime, this is the only Holy Grail to which I will pay attention.

How About A Sane Energy Policy Mr. Obamney?

It’s Presidential Election year.  Ergo, time to discuss our 40 year whacked out excuse for an energy policy.  Royally botched up by every President since, umm?


Make US energy supply cheap for the US consumer and industry, fast growing and profitable for the American energy sector, clean, widely available and reliable, and secure, diversified, environmentally friendly and safe for all of us.


Cheap, Clean, Reliable, Secure, Energy


An Energy Policy that leaves us more efficient than our competitors

An Energy Policy that leaves us with more and more diversified, supply than our competitors

An Energy Policy that leaves us more reliable than our competitors

An Energy Policy that makes us healthier and cleaner than our competitors

An Energy Policy that makes us able to develop adopt new technologies faster than our competitors

An Energy Policy that makes it easy for industry to sell technology, energy, and raw materials to our competitors

An Energy Policy that keeps $ home.

A Sane Energy policy


Think more drilling, less regulation on supply, lower tariffs, more investment in R&D, tighter CAFE and energy efficiency standards, simpler and larger subsidies for new technologies, less regulation on infrastructure project development.


A couple of key action items:

  • Support the development of new marginal options for fuel supply, and support options that improve balance of payments, whether EVs ethanol, solar et al
  • Make crude oil, refined products, Gas, LNG and coal easy to import and export
  • Drive energy efficiency like a wedge deep in our economy
  • Support expansion and modernization of gas, electric, and transport infrastructure
  • Support long term R&D in both oil & gas, electric power, and renewables
  • Reduce time to develop and bring online new projects of any type (yes that means pipelines, solar and wind plants, offshore drilling, fracking and transmission lines).
  • Support policies and technology that enable  linking of energy markets
  • Challenge the OPEC cartel like we do EVERY OTHER cartel and break the back of our supply contraints
  • Support the export of our energy industry engineering, services and manufacturing  sectors overseas
  • Incorporate energy access into the core of our trade policy
  • Support deregulation of power markets
  • Support long term improvement in environmental and safety standards
  • Broadly support significant per unit market subsidies for alternatives like PV, wind, biofuels, fracking as they approach competitiveness

Or we could do it the other way:

  • Leave ourselves locked into single sources of supply in a screwy regulated market that involves sending massive checks to countries who’s governments don’t like us because that’s the way we did it in the 50s?
  • Keep massive direct subsidies to darling sectors so the darling sectors can fight each other to keep their subsidies instead of cutting costs?
  • Keep a mashup of state and federal regulatory, carbon and environmental standards making it virtually impossible to change infrastructure when new technology comes around?
  • Promote deregulation in Texas, and screw the consumer in every other market?
  • Every time there’s a crisis, we can shoot the industry messenger in the head, stop work, and subsidize something.
  • Continue the Cold War policy of appeasing OPEC so they can keep us under their thumb for another 30 years
  • And drop a few billion here and there on pet pork projects

Come on guys, stop the politics, let’s get something rational going.  Oh wait, it’s an election year.  Damn.

And in the meantime how about making energy taxes (a MASSIVE chunk of your gasoline and power prices) variable, so they go DOWN when prices go up.  Then at least the government’s pocket book has an incentive to control cost, even if they’re incompetent at putting together a policy that does so.

Fighting the Military on Energy Strategy

For several years, the U.S. military has been one of the most active proponents and early-adopters of renewable energy and alternative fuels, with their Operational Energy Strategy.  Why?  Several reasons:

1.  Fuel delivered to the remote front-lines such as in Afghanistan for use in power generation and transportation has an “all-in” cost of $400/gallon.  Any energy source that can be supplied locally, such as solar, to reduce fuel has significant potential for economic savings.

2.  Being of critical logistical importance, convoys to deliver fuel are often the target of insurgent attacks, resulting in casualties to American servicemen and -women.  Anything that can reduce the quantity and frequency of these convoys should obviously be a very good thing.

3.  In buying so much oil, America sends hundreds of billions of dollars each year to regimes that not only don’t like the U.S., but actively attack U.S. interests.  As many astute observers such as James Woolsey, former head of the CIA has said on a number of occasions, “we are funding both sides of the war on terror.”  Military reliance upon oil is a key contributing factor.

Now comes James Bartis of the RAND Corporation, who argues in a recent study that “military planners are afflicted with petroleum anxiety.”  He says that the military shouldn’t be so worried about oil price increases and supply insecurity:  “they think prices are heading in only one direction:  up.  But history teaches us otherwise.”

Senator John McCain (R-AZ) is piling on to this argument.  McCain is alleging that the U.S. DOD long-term strategy to reduce reliance on fossil fuels is “an incredible waste of taxpayers’ money.”  In the mother of all current smears, McCain is wary of “another Solyndra” that might stem from this effort.

I pronounce Bartis and McCain guilty of imprudent short-term thinking — which is surprising and highly disappointing, since I have generally considered RAND and McCain himself as having a good grasp of the big picture. 

Fortunately, the military is keeping its head down and pushing forward with its plans:  earlier this month, the Army released a $7 billion RFP for renewable and alternative energy projects to be installed over the next 10 years.

The military’s energy strategy is not solely or even mainly about minimizing $/gallon or c/kwh, and it’s certainly not about environmental benefits.  This is about building and operating a military that is best suited to win against a dispersed enemy that derives its income from oil sales and targets oil supply lines to impede American military effectiveness and kill Americans. 


Reducing oil consumption as much and as quickly as reasonably practicable is key to unhooking our military from this thorny problem.  True, part of reducing oil consumption is through increased efficiency, but part of reducing oil consumption can also be via substitution of alternatives:  biofuels, solar, and wind.

Whether the military’s push for renewable energy will be as successful as desired is unclear.  However, the only way to know is to try.  If they don’t try, the U.S. military — and our country more generally — will just paint itself further into the corner in which it finds itself strategically today.

Top 10 Cleantech Subsidies and Policies (and the Biggest Losers) – Ranked By Impact

We all know energy is global, and as much policy driven as technology driven.

We have a quote, in energy, there are no disruptive technologies, just disruptive policies and economic shocks that make some technologies look disruptive after the fact.  In reality, there is disruptive technology in energy, it just takes a long long time.  And a lot of policy help.

We’ve ranked what we consider the seminal programs, policies and subsidies globally in cleantech that did the helping.  The industry makers.  We gave points for anchoring industries and market leading companies, points for catalyzing impact, points for “return on investment”, points for current market share, and causing fundamental shifts in scale, points for anchoring key technology development, points for industries that succeeded, points for industries with the brightest futures.  It ends heavy on solar, heavy on wind, heavy on ethanol.  No surprise, as that’s where the money’s come in.

1.  German PV Feed-in Tariff – More than anything else, allowed the scaling of the solar industry, built a home market and a home manufacturing base, and basically created the technology leader, First Solar.

2. Japanese Solar Rebate Program – The first big thing in solar, created the solar industry in the mid 90s, and anchored both the Japanese market, as well as the first generation of solar manufacturers.

3. California RPS – The anchor and pioneer renewable portfolio standard in the US, major driver of the first large scale, utility grade  wind and solar markets.

4. US Investment Tax Credit for Solar – Combined with the state renewable portfolio standards, created true grid scale solar.

5. Brazilian ethanol program – Do we really need to say why? Decades of concerted long term support created an industry, kept tens of billions in dollars domestic.  One half of the global biofuels industry.  And the cost leader.

6. US Corn ethanol combination of MTBE shift, blender’s, and import tariffs – Anchored the second largest global biofuels market, catalyzed the multi-billion explosion in venture capital into biofuels, and tens of billions into ethanol plants.  Obliterated the need for farm subsidies.  A cheap subsidy on a per unit basis compared to its impact holding down retail prices at the pump, and diverted billions of dollars from OPEC into the American heartland.

7. 11th 5 Year Plan  – Leads to Chinese leadership in global wind power production and solar manufacturing.  All we can say is, wow!  If we viewed these policies as having created more global technology leaders, or if success in solar was not so dominated by exports to markets created by other policies, and if wind was more pioneering and less fast follower, this rank could be an easy #1, so watch this space.

8. US Production Tax Credit – Anchored the US wind sector, the first major wind power market, and still #2.

9. California Solar Rebate Program & New Jersey SREC program – Taken together with the RPS’, two bulwarks of the only real solar markets created in the US yet.

10. EU Emission Trading Scheme and Kyoto Protocol Clean Development Mechanisms – Anchored finance for the Chinese wind sector, and $10s of Billions in investment in clean energy.  If the succeeding COPs had extended it, this would be an easy #1 or 2, as it is, barely makes the cut.


Honorable mention

Combination of US gas deregulations 20 years ago and US mineral rights ownership policy – as the only country where the citizens own the mineral rights under their land, there’s a reason fracking/directional drilling technology driving shale gas started here.  And a reason after 100 years the oil & gas industry still comes to the US for technology.  Shale gas in the US pays more in taxes than the US solar industry has in revenues.  But as old policies and with more indirect than direct causal effects, these fall to honorable mention.

Texas Power Deregulation – A huge anchor to wind power growth in the US.  There’s a reason Texas has so much wind power.  But without having catalyzed change in power across the nation, only makes honorable mention.

US DOE Solar Programs – A myriad of programs over decades, some that worked, some that didn’t.  Taken in aggregate, solar PV exists because of US government R&D support.

US CAFE standards – Still the major driver of automotive energy use globally, but most the shifts occurred before the “clean tech area”.

US Clean Air Act – Still the major driver of the environmental sector in industry, but most the shifts occurred before the “clean tech area”.

California product energy efficiency standards – Catalyzed massive shifts in product globally, but most the shifts occurred before the “clean tech area”.

Global lighting standards /regulations – Hard for us to highlight one, but as a group, just barely missed the cut, in part because lighting is a smaller portion of the energy bill than transport fuel or generation.


Biggest Flops

US Hydrogen Highway and myriad associated fuel cell R&D programs.  c. $1 Bil/year  in government R&D subsidies for lots of years,  and 10 years later maybe $500 mm / year worth of global product sales, and no profitable companies.

Italian, Greek, and Spanish Feed in Tariffs – Expensive me too copycats, made a lot of German, US, Japanese and Chinese and bankers rich, did not make a lasting impact on anything.

California AB-32 Cap and Trade – Late, slow, small underwhelming, instead of a lighthouse, an outlier.

REGGI – See AB 32

US DOE Loan Guarantee Program – Billion dollar boondoggle.  If it was about focusing investment to creating market leading companies, it didn’t.  If it was about creating jobs, the price per job is, well, it’s horrendous.

US Nuclear Energy Policy/Program – Decades, massive chunks of the DOE budget and no real technology advances so far in my lifetime?  Come on people.  Underperforming since the Berlin Wall fell at the least!


Thoughts from Intersolar 2012

By Guest Blogger Charles Waitman

I spent a day at Intersolar North America in San Francisco, considered by some to be North America’s premier exhibition and conference for the solar industry.  My career, to date has been in the oil industry.  This was my second Intersolar conference.  These are my observations.

PV dominated the conference.

Mark Pinto of Applied Materials gave an excellent presentation.  He forecasts that innovation will support continued growth in the rate of PV installation.  Dr. Pinto forecasts a 20 to 20% growth rate in annual solar installations, with annual installations reaching 250 GW/yr  and installed capacity reaching perhaps 800 to 900 GW by 2020.  He described total installed cost approaching $4/w today.  As an interesting perspective the installed cost of 250 GW, at $4/w, is about one third of worldwide expenditures for oil.  Other interesting perspectives, at the level of 800 to 900 GW, PV solar would represent 15% of worldwide generating capacity, 5 or 6% of annual generation, and a little less than 1% of energy use.   The US Energy Information Administration’s 2011 forecast (International Energy Outlook 2011) differs sharply from Dr. Pinto’s.  EIA forecasts a 16% annual growth rate for solar capacity (16% first derivative vs 20 to 30% second derivative for those of you who love calculus) from 2008 to 2020 with a 2020 capacity of 86 GW.  Pinto sees panel costs dropping below $1/watt.  Balance of system costs are coming down as well, but the progress here is slow.

I talked briefly with a representative of the EV Group about their non-reflective coatings.  The marketing strategy has been increased efficiency.  From my perspective the most significant benefit of these coatings might be expedited permitting since glare is a common concern.

I listened to several presentations at the PV Energy World Stage.  California Assembly member Skinner and Arthur O’Donnell of the CPUC reported on the California a legislative mandate to introduce storage with as yet unspecified physical requirements in 2015 and 2020.  The remaining presentations caused my head to spin thinking about load and generation profiles, distributed vs central generation, smart grid requirement – or perhaps things will just balance out.  However, the point that registered clearly in my mind is that $4/w for the installation isn’t the cost of PV in a very large scale and mature setting.  Storage, transmission, resources for load balancing, etc. will be big cost centers when we reach the point that PV power from the roof top impacts more than the firing rate of a peaking turbine.

What I didn’t see was discussion of end of life issues for panels and batteries.  While these issues are later (as in sooner or later), nickel, cadmium, lithium, magnesium, cobalt, tellurium, indium, selenium shouldn’t accumulate in stockpiles and permiate into the ground and water.  Everything has an end of life.  Disposal (or hopefully recycle) isn’t exciting, it is often expensive, it is hard to enforce.  PV isn’t the first promise of an almost infinite supply of clean energy.   Real thinking and robust policy regarding end of life issues should accompany the technological development that is proceeding at such a furious pace.

I am almost in the PV camp (a big deal for an oil industry guy).  PV is bigger than I thought, growth is faster than I thought (EIA is also a few years behind), and it will be a major part (as in Coal or Oil or Gas not domestic hot water) of the energy balance.  Balancing cost (including changes to the grid, and storage) and environmental impact (end of life) of PV against shale gas (abundant and likely cheap but faces groundwater issues) and combined cycle generation (pretty cheap and pretty clean but still a large source of greenhouse gas) will be no small challenge.


Chuck Waitman has extensive experience, within the oil industry, with synthetic fuels, refining, hydrogen production, cogeneration, energy procurement, energy contracts, and energy conservation.  For the last 5 years he has worked on implementation of California AB-32, the California Global Warming Solutions Act.  He presently consults on issues related to energy and greenhouse gas management.


2011 In The Rear-View Mirror: Objects May Be Closer Than They Appear

It’s that time again:  sifting through the detritus of a calendar year to sum up what’s happened over the past 12 months. 

Everybody’s doing it — for news, sports, movies, books, notable deaths…and now even for cleantech:  here’s the scoop from MIT’s Technology Review, and here’s a post on GigaOM.

So, my turn [drum roll, please], here’s my top 10 take-aways from 2011:

  1. Solyndra.  The utter failure of Solyndra, and the messy loan guarantee debacle, has been a huge black-eye to the cleantech sector.  It’s a political football that will be kicked around extensively during the 2012 election cycle, further widening the schism of support levels by the two major U.S. political parties for cleantech.  In other words, cleantech is becoming an ever-more polarizing issue — with Solyndra serving as the most visible tar-baby.
  2. Shale gas and fracking.   A chorus of ardent proponents of natural gas development, most vocally Aubrey McClendon, the CEO of Chesapeake Energy (NYSE: CHK) — the largest player in the shale gas game — is repeatedly chanting the mantra that shale gas is so plentiful that it can very cheaply serve as the major U.S. energy source for the next several decades.  And, recovery of this resource will create a bazillion jobs for hard-working Americans in rural areas.  In this view, who needs renewables?  Interestingly, this view also poses increasing threats to coal interests as well.  On the flip side, of course, the concerns about the use of fracking techniques, and the implications on water supplies and quality, are constant fodder for headlines.  Clearly, shale and fracking will continue to be hot topics for 2012.
  3. Keystone XL.  The proposed pipeline to increase capacity for transporting oil from the Athabasca sands of Alberta to the U.S. is the current lightning rod for the American environmental community.  Never mind that denying the pipeline’s construction will do very little to inhibit the development of the oil sands resources — Canadian producers will assuredly build a planned pipeline across British Columbia to ship the stuff to Asia.  Never mind that blocking the pipeline will do nothing to reduce U.S. oil consumption — which is, after all, the source of the greenhouse gas emissions that opponents are so concerned about.  This has become an issue of principle for NRDC and other environmental advocates:  “we must start taking concrete steps to wean ourselves from fossil fuels.”  Nice idea in theory, but this action won’t actually do anything to accomplish the goal, and will only further paint the environmental community in a damaging manner as being anti-business and anti-economics.  In my view, we have to work on reducing demand, not on curtailing supply; if we reduce demand, less development of fossil fuels will follow; the other way around doesn’t work.  The Obama Administration has punted approval for the pipeline past the 2012 election, but Keystone XL — like Solyndra — will be a major framing element in the political debates.
  4. Fukushima.  The terrible earthquake/tsunami in Japan in March killed over 20,000 people — and sent the Fukushima powerplant into meltdown mode in the worst nuclear accident since Chernobyl in 1986.  As costly and devastating as Fukushima was to the local region, it pales compared to the damages caused by the natural disasters themselves.  Even so, the revival of the perceived possibility that radioactive clouds could spew from nuclear powerplants put a severe brake on the “nuclear renaissance” that many observers had been predicting.
  5. Chevy Volt.  Released after much anticipation in 2011, sales of the plug-in electric hybrid Volt have been well below expectations.  Furthermore, as I recently discussed here, a few well-publicized incidents of fires stemming from damaged batteries have been a huge PR blow to gaining widespread consumer acceptance of electric vehicles.  Clearly, Chevy and others in the EV space have their work cut out for them in the months and years ahead.
  6. Challenges for coal.  As I recently wrote about on this page, the EPA has been working on promulgating a whole host of tightened regulations about emissions from coal powerplants.  These continue to move back and forth through the agencies and the courts, and coal interests continue to wage their battles.  But, between this set of pressures and low natural gas prices (see #2 above), these are tough days for old King Coal.  Not that they couldn’t have seen these challenges coming for decades, mind you, and not that some of their advocacy organizations don’t continue to tell their pro-coal messages with some of the most heavy-handed and dubiously factual propaganda outside of the recently-deceased “Dear Leader” Kim Jong Il
  7. Light bulbs.  One of the most absurd and petty dramas of 2011 unfolded over the planned U.S. phase-out of incandescent light bulbs, as provided for in one of the provisions of the Energy Independence and Security Act of 2007Representative Joe Barton (R-TX) led a backlash against this ban, arguing that it was an example of too much government intrusion into consumer choice — and succeeded in having the ban lifted at least for a little while, tucked into one of the meager compromises achieved as part of the ongoing budgetary fights.  This was accomplished against the objections not of consumers, but the objections of light bulb manufacturers themselves, who had already committed themselves to transitioning to manufacturing capacity for the next-generation of light bulbs:  CFLs, LEDs and halogens.  Now, the proactive companies who invested in the future will be subject to being undercut by a possible influx of cheap imported incandescent bulbs.  Way to go, Congress!  No wonder your approval ratings are near 10%.  Is it possible for you guys to focus on the big important stuff rather than on small bad ideas? 
  8. PV market dynamics.  Solyndra (#1 above) failed in large part because the phovoltaics market has become much more intensely competitive over the past year.  Module prices have fallen dramatically — no doubt, in large part because the market is now saturated by supply from Chinese manufacturers, who are sometimes accused of “dumping” (i.e., subsidizing exports of) PV modules into the U.S. marketplace.  This is stressing the financials of many PV manufacturers, including some Chinese firms and other established players.  For instance, BP (NYSE: BP) announced a few weeks ago its exit from the solar business after 40 years.  However, the stresses are falling mainly on companies that employ PV technology that cannot be cost-competitive in a lower pricing regime, whereas some of the new PV entrants — not just Chinese players, but some U.S. venture-backed players like Stion (who just raised $130 million of new investment) — are aiming to be profitable at low price levels.  And, after all, the low prices are what is needed for solar energy to achieve grid-parity, which is what everyone is seeking for PV to be ubiquitous without subsidies. 
  9. Subsidies.  Ah, subsidies.  In an era of increasing fiscal tightness (see #10 below), pro-cleantech policies are under greater scrutiny.  In particular, renewable portfolio standards are being threatened by state legislators of a particular philosophy who are opposed to subsidies in all forms.  The philosophy is understandable, but the lack of understanding or hypocracy is less easy to defend:  the status quo is almost always subsidized too, especially during its early days of development and deployment — and often remains subsidized well after maturity and commercial profitability.  Fortunately, there’s an increasing body of high-quality work that assesses the energy subsidy landscape in a generally objective manner, such as this analysis released by DBL Investors in September.
  10. Europe.  Although not a cleantech issue per se, the vulnerability of the European economy, the European Union, and the Euro in the wake of the various debt crises unfolding across the Continent is a major negative factor for the cleantech sector.  Europe is the biggest cleantech market, and many of the leading cleantech investors and corporate acquirers are European, so a recession (or worse, depression)  in Europe will be a very big and very bad deal for cleantech companies.

In all, 2011 was not a great year for the cleantech sector, and I don’t see 2012 being much better.  But, that’s not to say that good things can’t happen, or won’t happen.  Indeed, there will always be rays of sunshine among the clouds…or, to use another metaphor, you’ll always be able to find a pony in there somewhere.

Happy New Year everyone!

Shale gas is starting to affect markets….

The oil gas ratio hit a new record high December 27th with gas trading at $3.11/mmBtu and WTI going for $101.25/bbl yielding an energy ratio of 5.61.   In simple terms this means gas is  trading at the equivalent of $18.05/bbl crude.

The market is starting to notice this rapid shift in natural gas economics.  Back on Dec 10 I mentioned a few of the sectors, such as chemical processing, that would be likely winners due to lower priced gas.  Companies are now starting to announce their plans to build new plants.  Royal Dutch Shell PLC is planing an ethylene plant in the Appalachian region, Nucor is building a gas fired iron plant in Louisiana, Dow Chemical Co. is planning two new chemical facilities in the Gulf coast, and CF Industies is planning to boost its ferterlizer production made from gas.  (WSJ, 12/27/2011, A3) .  All due to relatively low gas prices.  If LNG importers are not able to “reverse to flow” and turn into LNG exporters, then the price of gas can stay low until domestic consumption has a chance to absorb these lower cost supplies.

One of the other sectors that should benefit from the relatively high oil/gas ratio is the CNG (compressed natural gas) transportation buisness.   In October I analyzed Clean Energy Fuels’ [CLNE] stock performance relative to the energy ratio and couldn’t really see any coorelation between the fundamental driver of their business (the oil/gas ratio) and their stock price.   Checking back today I’m still not seeing any sustained improvement in the company’s stock price.  So I’m still looking for the breakthrough in the transportation business.

In other news, shale gas is certainly affecting the price of electricity, both spot prices and prices offered for term contracts for renewables.   In the western US, on-peak spot prices in southern California today were $30.37 $/MWh….lower then they were 30 years ago in 1981 when our company ( started producing power.  And the natural gas based market reference price (MRP) used by the California PUC for evaluating renewable projects is off about 15% from the last MRP posted by the CPUC.

While this is happening the solar sector is having problems with oversupply and a softening market.  The oversupply is drivien by the rapid increase in Chinese production (including two IPOs in October and November – Changzhou Almaden and Sungrow Power).   Coupled with  German demand for 2011 reported to be 29% below 2010 levels two German producers, Solar Millennium and Solon SE filed for insolvency this month.  The supply/demand combination is also driving layoff such at those reported at SMA, Suntech, and First Solar.   And stock prices for solar companies, as measured by the solar ETFs KWT and TAN, have dropped by over 60% YTD and their market cap has fallen below the $70 million level that was related to me as a break-even size for an ETF.   In fact, all of the sponsors of sector specific ETFS –  KWT, TAN, FAN, PWND, GRID –  are losing money on their offerings if this is still the break-even number.  Which one will close up first like the progressive transportation ETF did in 2010?

How much of the market woes facing solar producers stems from gas competition?  I’m not aware of any analysis of the relationship of subsidies and RPS mandates to gas prices in the US, but reason tells us there must be some connection beyond a mere correlation of gas prices and solar woes.

I think this is just the start of the disruptions caused by low gas prices.  On a very small scale our company is affected in contract renewals and the prospects of lower electric prices/subsidies for new project development.  Many other businesses will be forced to adapt and potentially sooner then anyone expects.

Originally posted here .

Disclosures – no postions in any securites mentioned.


IPOs and Bankruptcies and Cleantech “Hot or Not”

Last night while watching Office reruns, I realized I’d been remiss, and a lot’s had been happening in the public equities end of the cleantech sector.  Not to mention yesterday’s billion dollar BK broiler announcement by the one-time Next Greatest Thing, Solyndra.

So, with my usual aplomb, I thought I’d simply peanut gallery what’s “Hot or Not” in cleantech.


Bled Out on the Operating Table

Solyndra – BK (and not the burger kind). Well, we wrote about it a lot, and nobody believes us.  But bad product is bad product, and high cost is high cost, regardless of how much money you throw at it.  So who’s going to calculate the impact on the DOE loan guarantee program’s projected loan losses? Not.

Evergreen Solar (NASDAQ:ESLR)  – :(  And it was such cool technology, too.  I’m very sorry to see this one go.  At one point some years back it was the savior deal of the sector.  But we are in a race to cost down or die. Not.


Filed, Not Yet Hell for Leather

Enphase – I’m very very interested in seeing these guys make it.   Lots of growth.  Very thin margins so far.  Product costs looks miserably high.  Need to cost down like a banshee running from the Bill Murray.  But you’ve got to love the category killer potential and how fast they’ve executed.  First microinverter guy to manufacturing maturity eats the others like oatmeal (sloppy but eaten nonetheless). Hot.

Silver Spring – Hmmmmmmmmh.  Home run potential, but what’s the term?  Very high beta?  These contracts are massive, far strung, very very tight margin.  They’ve shown they can get the growth.  But with long lead time sticky contracts, it’s about managing costs during slippage and change-orders well, and it’s a very competitive business.  One blown contract gives back all the profits on the last 8.  But, give kudos for getting this far and making it to be a real player.  Now we’ll see if you can execute. Hot.

Luca Technologies – Hello?  Are you serious?  I read this S-1 cover to cover.  I had my technologist read it and go find their patents.  We love this area.  The concept of microbes for in situ is old as can be, but very very interesting..  The challenge is always cost and performance (not really a new nutrient mix?).  How do you get the bugs, nutrients, whatever you’re doing, down the hole and into the formation far enough and cheap and effectively enough to make a difference.  But in the entire S-1 and website, there is not a single technology description, fact, proof point or ANYTHING that suggests they’ve actually cracked the real nut.  The few numbers they do mention are not even to the ho-hum level.  Did a real investment banker really sign up to this?  Who wrote this?  Their PR guy with a liberal arts studies degree?  Really?  This smacks of a “trust us I’m Jesus and daddy needs an exit” deal.  In reality, probably interesting, but still very very very very very very very early science project.   Not.


We have a whole collection of biofuels stocks to discuss now.

Solazyme (NASDAQ:SZYM) – half of its 52 week, less than a buck over its low. Not.

Kior (NASDAQ:KIOR) – Somebody correct me, but did the filings really indicate Khosla put money IN to this IPO?  And it got off at low end of the range even after that? From one of their filings: “In conjunction with the Issuer’s IPO, an entity affiliated with the Reporting Persons purchased 1,250,000 shares of Class A common stock, resulting in an increase in beneficial ownership by the Reporting Persons by that amount. The
purchase was made at the initial public offering price of $15.00 per share, for an aggregate purchase price of $18,750,000. The source of funds used to purchase the shares of Class A common stock was Khosla’s personal assets.” At least it’s money where it’s mouth is.  Not.

Amyris (NASDAQ:AMRS) – 58% of its 52 week high, 20% over it’s low. Not.

Gevo (NASDAQ:GEVO) – 40% of its 52 week high, c. 20% off it’s low. Not.

Codexis (NASDAQ:CDXS) – 55% of its 52 week high, c. 20% off it’s lows. Not.

I’d comment on the fundamentals of each one, but I don’t want you to think I’m depressed.  Oh, by the way.  Did I ever tell you the story about the cleantech sector’s magically changing cellulosic biofuels business plans to “cellulosic bio-anything-but-fuels” plans as people finally woke up and realized how tough using lousy feedstocks and high cost processes in a commodities market actually is.  Of course, careful you don’t change from targeting fuels to making feedstock for dirt cheap who would want to be in that business commodity chemicals or specialty chemicals with a global aggregate gross margin market less than your cash on balance sheet.

And a Few Tidbits

Advanced Energy (NASDAQ: AEIS) – I still really like this company.  Somebody’s going to own inverters.  And the numbers look very interesting.  Very. Need to dig deeper. Hot.

American Superconductor (NASDAQ:AMSC) – Ummm.  Do you believe their wind business ever recovers?  One customer.  Buying a competitor with one customer.  Both in China.  Customer doesn’t like single supplier risk where the supplier makes high margins?  What did you think was going to happen?  Ugly ugly story.  Very real possibility that they trade on a log curve to straight zero.  Some chance of sunshine, but I’d cancel the picnic. Not.

A123 (NASDAQ:AONE) – I really really really want this to work.  But what’s the path to profits?  Not feeling it. Not.

Tesla (NASDAQ:TSLA) –  “Don’t worry, the NEXT car will fix my company’s fundamental problems” – quote attributed to the Tesla CEO who replaces the next Tesla CEO. Not.

Active Power (NASDAQ: ACPW) – Hey, did anyone notice these guys are growing revenues AND margins?  A long haul, but keep it up!  Need careful consideration before I’d jump into flywheels, but someone deserves a ton of credit as coach of the year.  Hot.

Satcon (NASDAQ:SATC) – Hammered, but still a market leader.  Got to think about this one – it’s historically traded for more than it’s fundamentals justified, but with PV Powered and Xantrex snapped up, hard to imagine they stay independent for long. Hot.

SunPower (NASDAQ:SPWR)  – Wow.  Total. No guts no glory.  Highest cost producer, shall we call it the “performance queen”.  I do like this bet by Total, but it takes guts.  But when a market leader’s stock’s been hammered that far down somebody’s got to move and Total did . . .  Whether an individual investor can play is another story. Hot.

Ascent Solar (NASDAQ:ASTI) – Holy star solar batman!  These guys can sell ice to eskimos are have always been great R&D guys.  Still maybe the highest cost CIGS process known to astronauts.  I like these guys, but I’m not sure more cash fixes anything. Not.

Solon – What does “New US operational strategy” mean?  It means solar is a game of scale and execution.  Not.


Will Crystalline Solar Kill Thin Film? A Conversation with Applied Material’s Solar Head Charlie Gay

By Neal Dikeman

I had a chance to chat today with Dr. Charlie Gay, the President of Applied Material’s solar division.  You may recall, we broke the story in the blogosphere 5 years ago about Applied’s entry into solar, which was anchored with a highly touted and very aggressive strategy for turnkey large format amorphous silicon and tandem cell plants called SunFab.

Charlie reminded me that when they began 5 years ago, they did so along two major thrusts:  The acquisition of Applied Films in June 2006 getting an inline coating system for deposition of silicon nitride passivation layers on crystalline and in parallel an internal project to adapt their large flat panel display manufacturing technology for photovoltaics.

They still like the large module format, for a simple reason, cost in the field for large scale solar farms is heavily about getting area costs down relative to power output.  I was excited for another simple reason, when major capital equipment developers get involved, manufacturing maturity is not far behind, it forces everyone to rethink scale in different ways.

After a huge initial splash outselling everyone’s expectations in that SunFab concept, many industry analysts later kind of wrote them off as flash in the pan when they were reported having problems as implementations came in slower and smaller and harder than expected on their SunFab lines a couple of years ago, and a saw a major restructuring in 2009. But they’ve had success with that product anyways, EVERYONE saw a major restructuring in 2009, and more importantly the original vision of leading solar into mass manufacturing is still going strong, now across a range of products and technologies in thin film and crystalline manufacturing equipment.  Let’s put it this way, in their annual report they call themselves the largest equipment manufacturer to the solar sector, they have $1.5 Billion in annual revenues in the Energy & Environmental division, which is heavily PV, and there are like 120 mentions of the word solar in their annual report, almost once per page.

So what I really wanted to talk to Charlie about was the future of PV manufacturing. He frames the future by drawing a mirrored parallel between photovoltaics and integrated circuit manufacturing, beyond just semiconductors:

  • In IC, dozens to hundreds of device architectures exist, but basically one material, silicon.
  • In PV, there is essentially one architecture: the diode, but dozens to hundreds of material choices.

But silicon has been the mainstay material of PV for a number of reasons.  So we got into one of my favorite topics, the manufacturing improvement potential in crystalline silicon.

His version of Moore’s law for solar runs like this:  the thickness of the solar cell decreases by half every 10 years.  Today it’s 180 microns thick.  The practical possibility exists to get down to about 40 microns, with some performance improvement by making it thinner, but we can’t go much below 40 without being too thin to absorb enough light.  This fits with other conversations I’ve had suggesting that over the past couple of years most of the major crystalline solar manufacturers were working on paths to take an order of magnitude out of cell thickness.

If this comes to fruition, crystalline can literally wipe the floor with the existing thin film technologies.  Basically think sub $1 per watt modules with the performance of high grade crystalline modules today.  And as cost per watt equalizes, that higher efficiency starts to really tell, as since Balance of Systems costs have fallen at 10-12% per doubling of installed fleet, compared to module costs falling at 18-20%, in a world where BOS increasingly matters, the old saw about lower area cost per unit of power installed starts to actually bite for once.  Think ultra thin high performance low cost large format x-Si modules with fancy anti reflective coatings and snazzy high grade modules with on module inverters or DC optimizers mounted on highly automated, low cost durable trackers.  Think solar farms approaching effective relative capacity factors of 2.5-3 mm kW Hours per year per MW on 25 year systems at $2-3 per Watt installed.  Possibly the only thing on the planet that could match shale gas.

In fact, the entire thesis of thin film as a business and venture capital prospect has been built on the premise that crystalline material costs were just too high to get to grid parity. I’ve got scads of early thin film business plans touting that.  That thesis is under extreme pressure these days. I’d submit that if the industry 7 years ago had really understood how much improvement could be had, we’d have saved billions in potentially stranded thin film development.

Charlie says there are about a dozen different paths for enabling 40 micron cells.  The most interesting approach to him is an epitaxial growth process on reusable silicon templates.  A process which grows a thin layer of silicon on top of a reusable layer of silicon, using perhaps one mm thick silicon templates, etching the surface, and directly depositing silicon from trichlorosilane gas.  The idea would be to rack templates into a module array, grow the cells in an oven to your 40 micron level, then glue the glass module to the back side, and then separate it off to form a “ready to go assemble” module.  The challenge is basically oven and materials handling designs that get it cost efficient in high volume.

In essence, all you’d be doing is integrating a silicon ingot growth process directly into a module. Instead of growing ingots, cutting thick wafers, forming cells, then building modules from them, you grow cells racked into their own module personally instead of growing ingots first.

Hella cool.  A process like that means using fairly manageable capital equipment and materials handling technology development in known device and module technologies we could literally rip the ever living guts out of crystalline manufacturing costs.  And there are 11 more paths to play with???

The way he thinks about it, on a broader perspective more people are working in photovoltaic solar R&D today, by his estimate some 70,000 researchers and $3 billion per year, than in all of the prior PV history.   And that means whereas perhaps five main innovations over 35 years drove almost all of crystalline PV manufacturing costs (screen printing, glass tedlar modules, adapting steel from tires for cutting wafers, silicon nitride processes, and fast metrology tools), in today’s world, Charlie thinks we see 5 equivalent innovations in PV manufacturing technology every 2 years.

So I asked him to comment on whether there were parallel cost-down opportunities for thin films or whether it is an also ran waiting to happen.  He thinks there are.  He mentioned organics.  I pushed back hard, as organics have been written off by almost everyone for never seeing yield or performance, so where does he see the opportunity?  He responded that he picked organics to keep me from narrowing the materials field prematurely to just A-Si, CdTe, CIGS, and GaAS.  Silicon just like carbon can surprise us, e.g. bucky balls, carbon nanotubes, and just because early materials had stability and process issues, doesn’t mean we’ve exhausted the opportunities.

He says what he wants us to recall is that we are currently operating in PV manufacturing today with the materials that were on the radar in the energy crisis from 1974-1980.  That is changing in the lab and universities these days.  And given time the results will surprise us.

He draws a parallel between photography and photovoltaics, both invented in 1839, both rely on sunlight acting on materials. In photography, people started off putting films on glass, then putting films on mylar, and running things continuously.  Implying that in solar, we’re still on glass c. 1890.

He said to think about the original Ovonics/Unisolar vision in thinking about how you get to high speed continuous processing with thin film (think paper manufacturing, where done roll to roll it’s far more consistent than one-offs can be done).  If that is still our ultimate thin film paradigm (got to love the chance to use the word “paradigm”), the stars are still in front of us with what thin film COULD do.  And while roll to roll has had significant materials technology and process control challenges for the current class of materials, let’s go back to the mirror parallel to integrated circuits, in photovoltaics, one main device, scads of material options.  Just a matter of R&D hours and time.

He markedly did NOT suppose that the current state of thin film devices could beat 40 micron crystalline silicon by themselves.  It’s worth considering that we may look back and find that thin film, CdTe and First Solar were the stepping stones to 40 micron crystalline, not the other way around.  Maybe my next question to Charlie is whether he and I should set up Neal and Charlie’s 40 Micron Solar Company of America yet. 😉


Sunetric Offers Free Solar PV Systems to Raise Money for Japan

HONOLULU—, and — Sunetric, Hawaii’s largest locally owned and operated solar installer, has donated two solar photovoltaic systems to raise funds for two local charities assisting Japan. The first is the American Red Cross Hawaii State Chapter and the second is the “With Aloha” Foundation. Donations raised through the website will go directly to the American Red Cross Hawaii State Chapter and the “With Aloha” Foundation to aid in the relief efforts. Donors of $10 or more will automatically be entered to win one of the solar arrays. Winners for both PV systems will be drawn live on ESPN radio’s Bobby Curran Show on Monday, May 2.

More than 12,100 people have been confirmed dead and nearly a half million people are homeless in the wake of the earthquake and subsequent tsunami that hit north-east Japan on March 11. Funds are urgently needed for food, water, medicine, shelter and clothing. The first donation benefits American Red Cross relief efforts in Japan. The American Red Cross has been a primary source of support for the residents in the wake of the disasters in Japan. “We are so grateful to Sunetric for their compassion in this time of great tragedy. Their efforts in raising much needed funds for the American Red Cross Japan Earthquake & Pacific Tsunami relief effort will help us save lives and give hope to those in need. We cannot thank them enough for their wonderful contribution to the cause of humanity,” said Coralie Matayoshi, CEO of the American Red Cross, Hawaii State Chapter.

The second donated PV system supports the “With Aloha” Foundation which is holding a fundraiser on April 9 at the Pagoda Hotel. Presented by aio, the fundraiser is a block party, benefit concert, and food tasting featuring 24 local restaurants and entertainers from around the world. Proceeds from this event, along with donations raised by the solar giveaway, will be sent to Tohoku University Hospital in Sendai, Japan, where many of the earthquake and tsunami victims are receiving care.

“We are so thankful for Sunetric’s generosity in donating not one, but two, photovoltaic systems to help raise funds for the victims of Japan’s earthquake and tsunami,” said Susan Eichor, aio President & COO. “With Aloha is a community inspired movement of Hawaii organizations coming together and helping those in need. We are humbled to partner with companies like Sunetric to support Japan …With Aloha.”

The $15,000 solar arrays are projected to save an average household more than $100 per month. Both donated systems are identical and offer ten Trina PV panels of 230 Watts per panel. They come with 3000W Centralized Inverters and 25-year production warranties. The systems must be installed on the island of Oahu, but winners can transfer their prizes to a friend or family member. Donors to the Japan relief efforts will automatically be entered to win. To register, go to For every $10 donation, one entry to the drawing will be given. For $20, two entries will be given and so on. No purchase or donation is necessary.

“As a local company, Sunetric is proud to be involved in the effort to provide help and kokua for Japan,” said Sunetric Founder Sean Mullen. “Through this partnership, Oahu residents can make a difference for Japan’s people, while also getting an opportunity to switch to solar.”

About the American Red Cross:

The American Red Cross, a humanitarian organization led by volunteers and guided by its Congressional Charter and the Fundamental Principles of the International Red Cross Movement, provides relief to victims of disaster and helps people prevent, prepare for, and respond to emergencies.

About aio:

aio is a family of businesses specializing in media, technology, sports and food. Media include: Hawaii Business, Island Family, Honolulu, Hawaii Home + Remodeling, Hawai‘i, Hawaii-Ai, Ala Moana and Whalers Village magazines; Hawaii Buyer’s Guide and Lei Chic (online newsletter)and ESPN 1400 and 1500 AM (radio). Other aio companies include: Watermark Publishing (books), Obun Hawaii Group (printing), Upspring Media (software and websites), Talisman LBS (mobile marketing), B. Hayman Co. (commercial turf), Punalu‘u Bake Shop, Hukilau Honolulu Restaurant, Nutricopia (food) and HWB Foundation.

About Sunetric:

Founded in 2004 by Sean and Beth-Ann Mullen, Sunetric is Hawaii’s largest locally owned and operated solar installer. Since its inception, Sunetric has designed and installed more PV than any other company in the state and is responsible for nearly 60,000 solar panels and 12.5 megawatts of solar installed across all islands, providing the equivalent greenhouse gas benefit of taking 3,000 vehicles off Hawaii roads each year. Hawaii’s first SunPower Elite dealer, Sunetric has installed several of the largest photovoltaic systems in Hawaii, including Kona Commons shopping center on the Big Island, Wilcox Memorial Hospital on Kauai, and Y. Hata on Oahu. Visit for more information.

Sunetric’s Solar PV giveaways benefit American Red Cross and “With Aloha” Foundation

Who: American Red Cross Hawaii State Chapter, “With Aloha” Foundation and Sunetric.

What: Online Giveaway of two (2) donated $15,000 solar photovoltaic systems ($30,000 total).

Why: To support the victims of Japan’s disasters through the American Red Cross Hawaii State Chapter and “With Aloha” Foundation.

How: Register at No purchase or donation necessary. Every $10 donation automatically gets one entry to the drawing; every $20 gets two entries, and so on.

When: Register online now through May 1. Winners will be drawn live on ESPN radio’s Bobby Curran Show on Monday, May 2.

• Value: $15,000
• Ten 230W Modules
• Brand of Panel: TRINA
• Unirac Sunframe Compression Racking System
• 3000W Centralized Inverter
• $105.28 per month savings
• $1,263.36 per year savings
• Installation and permitting included for the island of Oahu
• Giveaway transferrable on the island of Oahu
• Installation must begin on or before May 1, 2012

• 5 Years for the module
• 25 Years for production

FOR MEDIA ONLY: For an electronic version of these documents or images, please contact Julie Ford at (808) 593-2890 or

Brightsource, Fisker and Solyndra – Soul Crushingly Bad Numbers Make up 17% of Near Record 1Q11 Venture Investment

GreentechMedia and Cleantech Group this quarter reported near record levels of cleantech venture capital investment. Nearly $2.6 Billion in deals.  No, quantitative easing hasn’t made the dollar slide that much yet, the numbers are real – mainly as the solar and transport  deals vintage 2004-07 are getting deep into their capital intensive cycles.  But a near record $2.6 billion, so everybody’s happy, right?

Personally, a quick scan of Greentech Media’s summary of the top deals sent cold shivers up my spine. The deals may be getting done, but are we sure investors are making money?  Let’s take three of the big ones and the only ones where Greentech Media quoted valuation numbers:  BrightSource, Fisker, and Solyndra.  Between the three of them that’s 17% of the announced Q1 deal total by dollars.

BrightSource Energy (Oakland, Calif.) raised a $201 million Round E for its concentrated solar power (CSP) technology and deployment, bringing its total funding to more than $530 million in private equity. That funding is in addition to a federal loan guarantee of $1.3 billion. The investors include Alstom, a French power plant player, as well as the usual suspects — Vantage Point Venture Partners, Alstom, CalSTRS, DFJ, DBL Investors, Chevron Technology Ventures, and BP Technology Ventures, together with new investors with assistance from Advanced Equities.  VentureWire reports that the latest round values the company in excess of $700 million.

Brightsource has been a darling for a long, long time.  It is easily the farthest along, most experienced and most ambitious of the solar thermal developers.  So what about the numbers?   Well it’s announced 2.6 GigaWatts of PPAs with SoCal Edison and PG&E.  And they’ve started construction on the first phases of the 392 MW Ivanpah development in the Mojave desert.  That’s the good news.

Here’s the bad news: $700 mm pre-money valuation + $201 mm in round 5 means only a 1.7x TOTAL valuation for investors on the $530 mm that has gone in.  Or the previous round investors are now in aggregate up 2.1x on their money for a 7 year old company after the 5th equity round is in.  Not sure who, but a few of those rounds got rocked, and not in a good way, or else we just did four wonderfully exciting 15% uptick rounds in a row.  But it gets worse.

This first plant, the one they’re headed IPO on, still hasn’t come on line let alone finished phase I.  DOE has committed $1.37 Billion in debt to it, and NRG $300 mm in equity, with more equity capital needed.  So once completed, the venture investors after their meager 2.1x uptick in the first 7 years, are between 3-8 years in on their venture investments and now own part of a heavily leveraged state of the art $2 Bil+ highest cost in the market power plant throwing off revenues of say $125 mm/year.  Perhaps $140-$150 mm at the high end (estimates have varied on capacity factor and price).  Right sounds almost passable.  But now let’s build the cashflow statement.  Add in Brightsource’s estimated direct labor at $10-$15 mm/year ($400 mm over 30 years from their website), plus maintenance/repairs at 0.5% of assets per year of another $10 mm (and hope to God it can stay that low – that would be a tremendous success in and of itself), then add on debt service on $1.37 billion assuming an only available by government guarantee 30 year amortization at 5%, and we eat another $80-$90 mm per year.  So we’re at $100 to $120 mm in annual costs, and $125 to $140 mm in annual revenues.  And we haven’t included gas, water, or any contribution to overhead, which are all non trivial. And don’t forget we’re building this out in 3 phases over several years.

So after all that, if it works, and if it works well, those investors MAY see a net of $20 mm-$40 mm /year in cashflow from that plant by 2014/2015 or so that they can use to cover plant overhead, fuel bills, the remainder which is then split between them and NRG to cover corporate overhead and then pay taxes on; or they may be losing money every month.  But we’ll make it up in volume, right?


But there is hope:

#1  pray for lots and lots of ITC (30% on the $600 mm in non subsidized capital would shave almost a whole 10% off the total cost!)

#2 pray for an IPO (and think VeraSun, sell fast).

#3 pray for a utility who overpays for the development pipeline

Two good articles with some more history from Greentech Media here and here.


Fisker Automotive (Irvine, California), an electric vehicle maker, raised $150 million at a $600 million pre-money valuation (according to VentureWire), from New Enterprise Associates and Kleiner Perkins Caufield & Byers. The firm previously raised $350 million in VC, as well as a $528 million loan from the DOE.

Terrific, another high flyer.  Same analysis, this one’s younger, only 4 years old, and only on investment round 4, which is good, since they’ve now apparently got a total valuation of only 1.5x investors money, or 1.7x total uptick for the prior 3 rounds of  investors.  But since they’re only in so far for 1-4 years not 3-8 like in Brightsource, they’re ahead of the game ;).  But once they take down their $528 mm in DOE debt (which this last tranche was supposed to be the matching funds for), they’ll be at a soul crushing 110% Debt/Equity.  Oh, and did I mention that the real way to calculate Debt/Equity assumes equity is net book value?  And since with these startups we’re using contributed capital, once should think of our debt to equity ratios as very very very very artificially low – but I didn’t want to scare you too much.

But look on the bright side:

#1 If they really hit their 15,000 car per year at $95K/car and typical 5%-10% automotive operating margins, they could be at solidly into junk bond land at 4-7x debt to EBIT!  (Assuming of course you believe they build a $1.5 billion/year automotive company with no more cash).  Of course, they apparently have a whole 3,000 orders placed for the c. $95K car, and are currently planning closer to 1,000 shipments for year 1.  Compare that to the Nissan Leaf and Chevy Volt, which cost closer to $30K each.  Chevy has been planning on shipping 10,000 Volts in 2011, and 45,000 in 2012.  Nissan has targeted first year Leaf production at c. 20,000, and apparently had more than that many orders before they started shipping.

#2 pray for an IPO

#3 Buy Nissan stock


Solyndra (Fremont, California), a manufacturer of cylindrical solar PV systems for industrial and commercial rooftops, closed $75 million of a secured credit facility underwritten by existing investors. Solyndra had annual revenues exceeding $140 million in 2010 and has shipped almost 100 megawatts of panels for more than 1,000 installations in 20 countries, according to the CEO.

I’m certainly not the first or only one to cry over Solyndra.  And I’m pretty certain I won’t be the last.

Founded in 2005, with a cool billion in equity venture capital into it now, I believe they were on F series before the IPO was canceled last year? With this $75 mm Q1 deal (in secured debt, of course, their investors are learning) they’ve announced another $250 mm in shareholder loans since the IPO cancellation, and the early round investors have been already been pounded into crumbly little bits.  But it’s worse.

If I followed correctly, the original IPO was to have raised $300 mm, plus pulling down the $535 mm in DOE debt.  Here less than 9 months after that process canceled (could that be right?), they’ve now raised 80% of the cash the IPO was planning, except all in debt, and grown revenues nearly double since starting that process.  My only response to this was OMG.  So they’re at a 26% Debt/Equity Ratio for a money losing company, where debt exceeds revenues by a factor.  Pro Forma for the DOE loan fully drawn they’re at 44%, and something like 6x debt to revenue.  These are crushing numbers for healthy profitable companies.  It gets worse.

Go read their IPO prospectus.  Teasing out who invested how much in each round from each fund, and the size of those investors’ announced funds, plus the number of funds that “crossed-over” and did their follow-ons from a newer fund, and you quickly realize there are several venture funds that literally tapped out on Solyndra, likely either hitting house or contractual maximum commitments to a single deal.  The concentration risk in Solyndra is possibly enough to severely pound multiple fund managers, not just Solyndra.


Please somebody please tell me I’ve got the numbers all wrong.


1,500 Reader Comments on Renewable Energy that will Really Work

Our Cleantech Linkedin Group, over 20,000 members strong, has had a seven month running discussion started by Robert Drummond entitled “Renewable Energy that will Really work”, asking for readers views on what’s practical in renewable energy.  Kind of crowd sourcing opinion and facts on the subject of renewable energy.  Robert’s discussion reached a staggering 1,500 comments this month.   It’s a real “cleantech democracy”, and a testament to the passion we all have for this sector, so I wanted to share it with you.  Throw your own comments in here or back on LinkedIn, but definitely participate!

Renewable Energy that will Really Work

By Robert Drummond

“I want to start a discussion about renewable and clean energy supply and distribution that will work in the forseeable future. I have read so much rubbish that I want to hear the views of people that know about each possibility and are not afraid to tell us all.

Since I have a lot of hang-ups and opinions that need to be checked I will fire-off first.

Renewable energy sources

Hydro. One of the best but not many places left in the world where it will make much of a difference. Some people hate dams so it isn’t universally loved.

Nuclear Fusion. This is the holy grail but seems too far away and even when it comes (if ever) it will be full of dangers and risks both real and political. The thought that it is just doing what the sun does appeals but I am not holding my breath.

Nuclear Fission. This is not really renewable and whether it is green or clean is equally debatable. Most major economies are renewing their commitment to it and it will play a bigger part in energy production in the future. The fear of mis-use of the technology and the huge capital investment and decommissioning costs will ensure that it never gets to become the big success that some would like.

Solar – Photovoltaic. This is the flavour of the year since everyone understands it and it seems to be as clean as you can get. Of course it does “pollute” the countryside and the materials used are not as benign as we would like but it works and is getting cheaper as the technology improves. This may be the first major alternative to pass the fully commercial test. However it is not portable and only works in the daytime. So we have to capture the electricity for use at night (or have alternative sources to match). Also it will not answer our prayers for a replacement to fossil fuels for transport until we have a better way of storing electricity efficiently with light weight devices.

Wind. I am told that the big problem with wind is that the off-shore farms (which everyone likes since they don’t want one in their own back-yard) suffer from three problems. Firstly the very large generators that are most efficient are extremely heavy and constructing them off-shore is mighty expensive. Secondly they are prone to damage and wear (particularly due to UV and salt and the problems of transmitting the rotary power to an effective generator). Thirdly the electricity is likely to be some way from the consumer which means loss in transit.
We also have the same problems about intermittant power generation and lack of portability of electricity.

Wave. Most of the technology is highly suspect and my friends say it wont work except in a limited local way with simple up and down pstons for pumping for uses such as desalination.

Tidal/Current. These seem quite hopeful but there are only limited places in the world with sufficient water flow to achieve anything worthwhile. Even if they succeed and do not foul-up or kill all the fish they will like hydro-electric soon run out of available good locations. They have the advantage of being hidden from view. Again the problems of intermittancy in most places and also they generate electricity.”

Join our Cleantech Linkedin group and view the 1,500+ comments here, or post in the Cleantech Blog comments below.

Hola, Tres Amigas!

by Richard T. Stuebi

Something grand is emerging on the vast dusty plains of West Texas and Eastern New Mexico.

Tres Amigas is an ambitious scheme to interconnect the three primary power grids in the U.S. — the Western grid known as WECC, the Eastern grid known as the Eastern Interconnection, and the Texas grid known as ERCOT.

As profiled in an article called “A Highway for the 21st Century” in the recent edition of Energy Biz magazine, Tres Amigas aims to incorporate high-voltage direct current (HVDC) and grid-scale energy storage technologies to enable synchronization and massive power transfer capability across the three grids — which are almost completely separated today.

Although it might seem straightforward to tie together three power grids, this is actually a very challenging technological problem.  AC to DC to AC converter stations are required at the interfaces, relying upon HVDC technologies that, while beginning to be more commonly employed, have never been deployed at the scale — 5 gigawatts initially, up to 30 gigawatts eventually — contemplated by Tres Amigas.  And, to absorb the large swings in generation provided by wind and solar projects in the Great Plains, Texas and the Desert Southwest, Tres Amigas aims to install utility-scale batteries, a still-developing area of technology.

Not surprisingly for a large and first-of-a-kind project, it’s not cheap.  Tres Amigas is forecasted to require up to $1 billion in capital.  The question will be whether the investors in Tres Amigas can make good returns. 

Presumably, the business model is based on a combination of wheeling charges (revenues from renewable energy project developers seeking to move power from source to load centers) and ancillary service fees (charges to the three grid operators to keep each of them more stable in the face of shifting supply and demand conditions).  A “merchant project” of this type and magnitude has never been tried.  No doubt, it’s a very risky bet. 

Not surprisingly, American Superconductor (NASDAQ:  AMSC), whose technologies are at the core of Tres Amigas and who would stand to benefit big-time from its success, is an investor sponsoring the development team.  It wouldn’t surprise me to see the battery supplier, when chosen, also joining the mix.

The upside of Tres Amigas to renewable energy interests is big.  If the project is completed, works well, and remains financially solvent, it will debottleneck many limits to adding further wind and solar projects in the Southwestern U.S.  There’s plenty of sun and wind out there, but the constraining factor in tapping it has been the ability of the power grid to cope with the inherent fluctuations in power output. 

With its energy storage capability and linkage across three grids, Tres Amigas would be big and bold enough to enable many heretofore thwarted renewable project developers West of the Mississippi to effectively reach a broader spectrum of potential customers from L.A. to Dallas to St. Louis, while mitigating the operational problems — such as those at the infamous congestion point near McCamey TX — that grid operators and other skeptics use as a basis for criticizing or objecting to renewable energy development.

7 Book Reviews in Cleantech and Energy

Sandor Schoichet s a longtime Cleantech Blog reader, and Director of Meridian Management Consultants.  Sandor has EE and SM degrees in Electrical Engineering & Computer Science from MIT, where he studied artificial intelligence, office automation, and business process reengineering, and completed a joint program in Management of Innovation at the Sloan and Harvard business schools. He holds undergraduate degrees in Information Sciences and Philosophy from UC Santa Cruz.  He published these book reviews on our sister site, and following our Cleantech Bookshelf,  we liked them so much we’re republishing them here as a Reader’s Choice Bookshelf.

Natural Capitalism: Creating the Next Industrial Revolution
by Paul Hawken, Amory Lovins, L. Hunter Lovins

If there was one key to turning around the damaging business and environmental practices of modern culture, what would it be?  ‘Natural Capitalism,’ the seminal 1999 call for a broader focus on sustainability, presents an overwhelming case that the key is resource efficiency and effectiveness.  Just as conventional capitalism is all about using financial capital effectively, so ‘natural capitalism’ is about expanding that bottom line focus to include the  natural resources and ecosystem services underlying the ability of business and society to function in the first place.  The authors argue that with appropriate shifts in business perspective and government policy, our economy could be something like 90% more efficient in its use of irreplaceable natural resources, thereby mitigating ecosystem impacts, enabling global development, and staving off climate change.

Throughout history, until very recently, man has been a small actor in an overwhelmingly large world.  Most of the book explores how this has given rise to our ingrained cultural patterns of wasteful resource utilization, limited focus on capital efficiency, and drive for production volumes, while assuming unbounded access to subsidized natural resources and ‘free’ ecosystem services.  Shifting perspective to include natural capital on the business balance sheet, and to expand lean manufacturing principles beyond the factory walls is what’s required to address the ecology/climate change nexus.  This change in perspective is embodied in a range of sustainable business concepts, including the ‘triple bottom line’ (profits, people, and planet), and the ‘cradle-to-cradle’ model for recycling products and integrating industries to eliminate ‘waste’.

The basic principles of natural capitalism put forward can be summarized as: (1) focus on natural resource efficiency (2) using closed loop, biomemetic, nontoxic processes (3) to deliver more appropriate end-user services (4) while investing in restoring, sustaining, and expanding natural capital.  Following these principles leads not to constraints on business or lowered expectations, but an enormous range of new business opportunities to profit from improved efficiencies and environmentally beneficial activities.  One of the best expressions of this perspective comes in the discussion on climate change, providing a refreshing contrast to the recent spate of bad news on this front: “Together, the [available business] opportunities can turn climate change into an unnecessary artifact of [our] uneconomically wasteful use of resources.”

While the authors deliver an awesome, deeply researched articulation of their vision, showing with many examples why it’s important and how it can work within our current capitalistic economies, the book has two key flaws.  First, it falls prey to the syndrome first articulated by Paul Saffo, founder of the Institute for the Future, of confusing a clear vision of the future with a short path.  This combines with an  excessive reliance on sheer volume of examples to make their points, too many of them poorly explained, bristling with non-comparable numbers, and substituting hand-waving for real outcomes.  Deeper exploration of fewer examples might have illustrated the principles better, and have been much easier to read.  Also, 11 years after the original publication, many of the examples are seen to be hastily chosen and and used to support glib and overreaching conclusions that make the authors seem naive.  Examples include the advent hydrogen powered cars (“hypercars”), the potential for shutting down Ruhr Valley coal production in favor of direct social payments to coal workers, or the imminent triumph of the Kyoto Protocols for international carbon trading.  And, while much attention is paid to articulating the perverse incentives, misguided taxes and subsidies, and split responsibilities that impede more efficient system approaches, there’s short shrift given to new technology adoption rates, the scale of existing infrastructure investments, or the political complexities of changing incentives and subsidies.

However, if you are interested in understanding the genesis and foundations of the modern sustainability movement, this is a fundamental text.  Despite its flaws, after 11 years the fundamental argument and principles hold up well and are still inspiring.

Power Hungry: The Myths of “Green” Energy and the Real Fuels of the Future
by Robert Bryce

Bryce bills himself as a purveyor of “industrial strength journalism,” and ‘Power Hungry’ doesn’t disappoint. Starting with a clear statement of his own energy policy – “I’m in favor of air conditioning and cold beer.” – Bryce provides a muscular, data-driven analysis of our modern industrial civilization and the changing mix of energy sources that power it. This is an eye-opening discussion that does an unusually good job of conveying the scale of our existing energy infrastructure, and the challenge of providing adequate energy supplies for the future, not just for the US and Europe, but for the developing world and the third world as well, under the constraints of economics and decarbonization. Bryce articulate four energy imperatives – power density, energy density, cost, and scale – and uses them as a consistent framework for looking at what he calls the “Myths of Green Energy.” His “myths” run the gamut from the idea that wind power can really reduce overall CO2 emissions, to the idea that the US lags other countries in energy efficiency, to the idea that carbon capture and sequestration could work at scale, and intriguingly, even the idea that oil is a dirty fuel compared to the alternatives. While the debunking of green alternatives has flaws, especially in the lack of attention to advanced biofuels, smart grid technologies, and green building materials, it is refreshingly apolitical – focused on facts, practical alternatives, and the requirements of scale. In some ways Bryce ends up with conclusions similar to those of Bill McKibben in his recent book ‘Eaarth': we will not be able to turn the tide on atmospheric CO2 quickly enough, the scale is too large, the transition times are too long, the pressure for global development is too great. We will have no choice but to mitigate some problems and adapt to the rest. However, instead of advocating acceptance of a “graceful decline” as McKibben does, Bryce lays out an energetic path forward, a “no regrets” policy he dubs N2N: shifting electrical generation aggressively towards natural gas in the near term, while investing in advanced nuclear technologies for the long run. The strongest element of the book is how he effectively links the future economic health of the US with rising prospects for the rest of the world … and that will take massive quantities of carbon-free power, not only for economic development, but for mitigating unavoidable climate change impacts as well. ‘Power Hungry’ is a challenging and valuable read for everyone interested in green energy and an effective response to the climate crisis.

Whole Earth Discipline: An Ecopragmatist Manifesto
by Stewart Brand

Brand, as ever, is a clear and forceful writer, fearlessly putting himself on the line with specific recommendations and a call to action. This is the Plan missing from Al Gore’s otherwise excellent textbook, ‘Our Choice: A Plan to Solve to Climate Crisis’ –harder-edged, more urgent, more tech-savvy, willing to name names, kick butt, and provoke a reaction. This is the place to start if you’re ready to move beyond the conventional green perspective and really get a grip on what responding to the climate challenge entails. Frightening and exhilarating at the same time!

Eaarth: Making a Life on a Tough New Planet
by Bill McKibben

I’m conflicted about this book, and McKibben’s style in general. First, this is a valuable contribution to the debate about how to think about climate change and appropriate goals for our planetary future. McKibben actually presents many good ideas (in the second half of the book), rooted in a realistic and compelling vision of how our world is changing and how we need to adapt. However, his writing style, especially when presenting bad news (the first half of the book) is just “one damn thing after another,” an endless listing of specifics without adequate context or meaningful analysis … he apparently does not understand that anecdotes are not evidence. While he makes his argument most energetically, and has lots of suggestive detail that appears to support it, in the cases with which I am directly familiar he is guilty of taking things out of context, then making gross simplifications and overreaching generalizations. And this is too bad, because, overall, I think he’s basically right, and that his suggestions for change are excellent. Probably the most important aspect of this book is simply his tough, clear-eyed situation assessment of the damage that’s already been done, the building momentum of environmental change, and the need to get on with a meaningful response. I worry, though, that by beating us over the head with a stream of bad news, and then framing his suggestions for a response in terms of achieving a “graceful decline”, too many people will be turned off and won’t hear the good ideas towards the end of the book. The grand project of changing our culture so that we can live in a durable and robust symbiosis with our environment on a global scale … that’s not a graceful decline, but a call to help create a new age as exciting as any that went before.

Turning Oil Into Salt: Energy Independence Through Fuel Choice
by Anne Korin, Gal Luft

This slim volume is the clearest and most direct analysis I’ve yet seen of oil’s position as a strategic commodity, and the potential for open fuel standards to enable a market-based pathway to transportation fuel choice. Especially notable for its independent perspective … we hear so much about the need for ‘drop in’ petroleum equivalents and the ‘ethanol blend wall’, but not nearly enough about other approaches that might emulate the open interface model that has driven the phenomenal growth of the internet. Absolutely required reading for anyone interested in clean energy, the potential contribution of biofuels to achieving energy security, and the practical steps that we need to take to move down the path.

Science as a Contact Sport: Inside the Battle to Save Earth’s Climate
by Stephen H. Schneider, Tim Flannery

If you care about the big picture of climate change that’s driving the urgency behind global environmental agreements and the commercialization of greentech, then Schneider’s ‘Science as a Contact Sport’ is must reading. The book achieves two objectives in an engaging and forceful manner. First it is a great introduction to the science of climate change, presented through Schneider’s personal experience as a key participant in its development. And second, it provides much-needed insight into how the issue has played out in the US legislature and the global media, again from an up-close and personal point of view. Democracy and government are both messy systems, but still are forums where the environmental and greentech communities must ultimately triumph, and Schneider’s personal experience should be of value to everyone engaged in the battle. Some elements of Schneider’s message echo Al Gore’s discussion in ‘The Assault on Reason,’ but are presented in a clearer, more direct, and better operationalized manner. Highly recommended!

Why We Hate the Oil Companies: Straight Talk from an Energy Insider
by John Hofmeister

Hofmeister writes with refreshing directness and lack of pretense about two key ideas: the disconnect between “political time” and “energy time” that drives legislative dysfunction in energy and environmental planning; and his own proposal for an independent Federal Energy Resources Board to fix it. Most of the book is a walkthrough of the current US energy business and infrastructure … the “straight talk from an energy insider” part. He convincingly lays out an array of problems with the approaches advocated by just about everyone, from left-wing environmentalists, to right-wing “infotainers”, to the energy and utility power industry itself … with special scorn for the disastrous and long-running failure of our elected officials of all stripes to address our energy needs in a serious manner. The book provides a prescient and unnerving in-depth background to current newspaper reporting on the BP spill disaster in the Gulf (it went to press just before the explosion and blowout). Hofmeister is on less firm footing, however, when he switches to his proposal for an independent energy regulatory agency modeled on the Federal Reserve. While he surely gets an ‘A’ for boldness and for thinking outside the box, how this is supposed to work and how we are supposed to get there in advance of a national energy disaster akin to the Great Depression, are both left up to “grassroots pressure.” All I can say is that I hope his non-profit, Citizens for Affordable, is successful at pushing his ideas onto the national stage, and helping to build a consensus focus on practical solutions. Highly recommended … wherever you stand on these complex issues, Hofmeister will push your buttons and make you think about what a real solution might look like.

New 12 MW Solar Installation by EDF in Ontario

Toronto-based EDF Energies Nouvelles Canada (EDF) announced on January 4 that its 12 MW St. Isidore A solar installation successfully joined Ontario’s alternative energy industry when it began operations in late December. St. Isidore is a community of fewer than 1,000 people located in Prescott and Russell County, east of Ottawa, the nation’s capital. The project created jobs for two hundred builders and career solar workers.

Ontario is home to the Ontario Power Authority’s (OPA’s) feed-in tariff (FIT) program and its companion, the microFIT, which deals with projects smaller than 10 kW. The programs create clean air by paying owners of participating solar, wind, and biofuel projects high rates to feed renewable power into the grid. It also creates alternative energy career opportunities for graduates of solar installation training courses and other “green” educational programs in the province. St. Isidore A will participate in Ontario’s Renewable Energy Standard Offer Program – which the OPA has since replaced with the microFIT – as will its companion project, St. Isidore B, which the company expects to complete by the end of 2011. The projects are EDF’s fourth and fifth to take part in the region’s solar industry.

EDF has operated in Canada since 2007. Its parent company, EDF Energies Nouvelles, is headquartered in France and operates in thirteen European countries and “coast to coast in North America.” The companies offer an integrated approach that ranges from project development through to power generation. EDF Energies Nouvelles’ subsidiary, enXco Service Canada (enXco Canada), will operate and maintain St. Isidore A. EnXco Canada is the new Canadian wing of San Diego-based enXco, a solar, wind, and biogas developer with more than two decades of experience in the renewable energy industry.

“Today marks another notable achievement for EDF EN Canada,” says Tristan Grimbert, President and Chief Executive of EDF and EDF Energies Nouvelles’ other North American affiliates. “We are proud to extend the economic and environmental benefits of solar energy to the St. Isidore community and fulfill our ambition to build high-quality solar projects in Canada.” With its ongoing construction of St. Isidore B, EDF will continue to create clean air and alternative energy careers for graduates of Ontario’s photovoltaic courses.

Billion Dollar Opportunities in Cleantech

by David Anthony

It’s true. Cleantech investment hasn’t worked out exactly how people dreamt it would back in the overly-optimistic days of the last decade. One of the main obstacles deterring venture capital investors from the sector is the frequently lengthy time lag between investment and commercialization. More importantly, the number of successful cleantech exits remains few — often because either the technology is not as disruptive as competing solutions or it is simply taking longer to adopt it.

The other fly in the ointment is the large-scale capital expenditures required to develop the technology in the first place. Clean technologies can be incredibly capital-intensive in the developmental and commercialization stages.  The level of investment required can and have discouraged further investors from committing to later and larger rounds of capital raises. When this problem is compounded with that of actually getting to commercialization it is not hard to see why many venture capital funds are decidedly more cautious about investment in cleantech than they were just a few years ago.

And these are not the only snags. The downturn in the world economy has drastically reduced the political appetite for renewable energy, especially in the US; the untimely death of President Obama’s cap-and-trade bill is testament to that. So although Feed-in-Tariffs continue to provide incentives for new developments, the fact that there is no price on carbon production and no penalties for over-producing it in the US mean that alternative energy remains a less attractive alternative than fossil-fuel.

But despite this doom and gloom, there are still very good reasons for investors to stay the course and persevere with the cleantech sector. The primary reason for this is the still-gigantic potential in a number of key markets which, when successfully exploited, are going to reap huge dividends for those who crack them and invested in the achievement.

Look, for example, at utility-scale energy storage. Lack of energy storage means that wind and solar energy is less viable at the moment than it could be.  Because energy from these sources is often produced at times which do not correlate with peak energy demand and because a viable utility scale storage solution has yet to emerge, renewable energy has been unable to achieve grid parity. In West Texas, some wind power generators have had to pay the state grid operator to take the energy off their hands in order to continue qualifying for federal tax credits. These costs are inevitably passed on to the consumer, so a breakthrough in large-scale energy storage will have an enormous impact on the profitability of renewables such as wind and solar. Whoever manages to solve this problem and develop an affordable method of energy storage is going to be able to sell it to every alternative energy generator in the world, and the returns on their investments will be huge.

Another massive potential market is the development of a viable system for carbon capture and sequestration. The two largest economies in the world, the U.S. and China, possess the world’s largest and third-largest coal reserves respectively, and it is highly unlikely that they will completely ignore such a cheap and abundant source of energy. But the environmental effects of burning coal have extremely heavy long-term costs, so the development of efficient, zero-emissions coal plants will revolutionize the energy market. It is a simply inescapable fact that the rewards for anyone who has the vision and staying power to invest in developing this technology will match the size of the gigantic market for clean coal-derived energy.

Low-cost desalination is going to be yet another definite winner in the near future. Climate change is creating new and unforeseen changes in global weather patterns. For example, there are fears that the south Asian monsoons will weaken and become less consistent. Given that the monsoon accounts for 80 percent of India’s total rainfall, a serious change in this weather pattern would without a shadow of a doubt need to be redressed with alternative sources of clean water. Benjamin Franklin was wrong; it’s not just death and taxes that are certain in this world, the market for clean water is too because we simply cannot live without it. Low cost desalination will be developed; the only question is who will have had the foresight to invest.

Vertical (or protected) farming could be another huge future market. The rising middle class in the two most populous nations on earth, China and India, is increasing global demand for food. If this new emerging middle class population’s shopping patterns mirror the US middle class’s grocery trends – where the number one grocery item is bagged leafy greens, for example – there is sure to be a sharp increase in demands for greater availability and variety of produce. To sustain the world’s ever increasing demand for food, new farming methods will have to be developed to feed today’s seven billion hungry mouths and the nine billion of 2050. Low-cost protected farming, using hydroponic and aeroponic farming methods within large urban structures, could provide one of the answers to the conundrum of feeding an ever-growing world population. It would also improve food freshness, cut down on carbon emissions caused by food refrigeration and transportation and halt soil degradation caused by pesticide and herbicide usage. Like the issue of fresh water, this is a riddle that will be solved because it has to be solved. And, once it is solved, everyone will be buying.

And the world’s most abundant energy source must not be forgotten either. The photovoltaic cells that convert solar energy into electricity currently lack the efficiency to achieve grid parity, making solar energy and PV systems a viable, long-term prospect for replacing fossil fuels. But improved efficiency of 30 to 40 percent will make solar power a much more competitive energy source. The development of light-trapping photovoltaic cells, and the adaptation of manufacturing lines to accommodate the new technology, could deliver the required increase in efficiency. Once this is achieved, harnessing the output of the gargantuan energy factory we call the Sun will become competitive and another enormous market will have been created.

What is most needed at the present time, though, is an ability to look beyond the current obstacles to the rewards that renewed investment and perseverance will reap for those who commit and stay the course. The cut-and-run trend witnessed of late in the cleantech sector is exceedingly myopic as the development of clean and green technologies is a necessity the world cannot do without. Climate change, the growing unpredictability of global weather patterns, urbanization, a mushrooming middle class within the emerging economies and depletion of fossil fuels are all global problems that need to be rapidly addressed. Necessity is the mother of invention and these issues will be solved one way or another. The only question is, who will have the prescience and perspicacity to be part of the future?

David Anthony is the Managing Partner of 21Ventures, LLC, a VC management firm that has provided seed, growth, and bridge capital to over 40 technology ventures across the globe, mainly in the cleantech arena. David Anthony is also Adjunct Professor at the New York Academy of Sciences (NYAS) and the NYU Stern School of Business where he began teaching technology entrepreneurship in 2009.

David received his MBA from The Tuck School of Business at Dartmouth College in 1989 and a BA in economics from George Washington University in 1982. He is an entrepreneurship mentor at the Land Center for Entrepreneurship at Columbia University Graduate School of Business. In 2002, David was awarded the Distinguished Mentor of the Year Award from Columbia University.

David blogs at David Anthony VC