Is Tesla Really the EV King?

by Neal Dikeman, chief blogger, Cleantech Blog

Tesla Motors (NASDAQ:TSLA) has been the electric vehicle darling since almost the day it launched.  I’d argue there are some really neat aspects to its product and strategy, but it is far from a resounding market leader in EVs.

The Range and Battery Scale Advantage

There are a couple of really exciting things to like.  Pulling a quick summary of the prices of all the pure electric vehicles currently selling in North America, I ranked them by EV Price/ Range.  Tesla is and always has been the leader here.  Down in the <$300/mile range, half of the  i3.  Quite frankly it’s been the only game in town for a 200 mi electric car.

And as lithium batteries are the big ticket item in an EV, and Tesla loads up on them, that confers some advantage to go with that high ticket price.   It drives up its price and its range, and puts it still in a class by itself on range. But as you see when graph range vs price, packing all those batteries in also gives Tesla a huge nominal advantage over its competitors compared to where one would project it to be on price.  Tesla talks like this is all technology and battery management that is hard for competitors to match, I think it may be just as much a combination of purchasing scale and simply an illustration of relative cost absorption in a high range EV (at the lower 70-90 mi range of everyone else, the car cost swamps the battery cost, and differential cost of a few mi in range is much less important than the luxury premium).  You can see this illustrated in flatness of the PHEV version of the curve, and the wide differential between the i3 and LEAF, both very close in range.  Of course, as we are largely comparing prices not costs, some dirt in the numbers is also certainly present.

EV $ per Mileage

EV Price vs Range







PHEV $ per eMileage

Plug in hybrids as you’d expect show a much less dramatic differential and flatter curve, with most of the differential driven by luxury vs mass consumer car class than range.  The game in PHEV’s appears to be minimize battery for maximum consumer taste and performance output.




Future Impacts of Scale?

The interesting bet however, is what happens in the future.  Lithium ion batteries are one of the few fast falling cost items in a car, Tesla ought to be able to ride that curve down faster than the others, since it has both more purchasing power than its competitors (several x more battery kwh per car and one of the volume leaders in cars adds up), as well as a larger exposure in its vehicle unit cost structure in batteries than any of its competitors as the batteries make up such a major portion of its vehicle cost.

However, its attempt to vertically integrate upstream into  batteries with the gigafactory might well work against it here, as it gains leverage on the materials in the value chain, but loses leverage against the manufacturing cost, locks in on a single battery design, and has to recover significant capital outlays its competitors do not.

If the rest of the lithium ion industry can cost down as fast or faster than Tesla, it loses out quickly.  Alternately, when another car company rolls out a high range vehicle, Tesla’s advantage can erode fast.  And finally, it is unclear whether either the PHEV or short range EV strategies, requiring fewer costly batteries, simply continue to outpunch Tesla with consumers.  Like its zero emission credit advantage supporting profits when it first launched, this battery scale advantage may also be more short term than sustainable.

North American Market

But possibly most disturbing is trying to tie out this advantage to how Tesla is actually doing with this strategy in its core North American market.  It’s now been hot and heavy in North America for a couple of years.  Should be delivering results, but  things are not quite that rosy for a $20 billion market cap “market leader”.

It was not first, Nissan with the LEAF and GM with the Chevy Volt beat it to the market.

Its core initial US market has seen basically flattish sales growth YoY going on 2 consecutive years now, ostensibly as it scrambled to open new markets overseas, including its struggling Asian market.  But struggling to drive high growth in your first core market is never a good sign.  One wonders how much excess demand per month actually exists for an $80K electric sports car, and if some of Tesla’s shift of production to seed overseas markets is simply a strategy to keep its domestic demand levels pent up, out of concern that there is not adequate growth possible at this price point in one market to satisfy Wall Street’s valuation.  Not a bad idea, but does have implications.  In counter point, while GM and Toyota also struggled for growth, Ford and Nissan delivered strong double digit growth in Tesla’s home market while it stayed flat, and BMW has started to chew the mid luxury market in between.  One wonders if the strategy of twinning a low range low cost EV with PHEVs doesn’t simply deliver better product line punch than the high mileage high cost strategy.

Tesla is not the largest, and has never worn the crown of most EVs sold for a year, coming in 3rd and slipping to 4th in 2013 and 2014, and only barely edging out Ford so far for 2 months of 2015 and helped by weak Chevy sales months so far. Also probably helped as Tesla apparently had to shift about a month’s worth of car production into Q1 from production issues according to its annual letter.

NA EV Company Ranking

NA EV Company Ranking







Source: tracker 

Also pictured is the results from a second tracker with slightly different estimates claiming Tesla is actually ahead so far this year.

But almost as interesting to me has been the rise of the BMW.  That i3 which is almost double Tesla’s price/mile is doing rather well.  By some trackers has edged Tesla in sales of its i3 and i8 EV and PHEV in North America in 3 of the last 7 months, with less than a year under its belt.  Arguably the i3 was aimed more at the Volt and LEAF than the Model S, but getting even remotely close to caught by an upstart short range BMW product this early in its cycle was I am sure never part of Tesla’s plan.

BMW vs Tesla







Do note that all Tesla monthly numbers are somewhat suspect, as the company does not publish anywhere near the detail that other automakers do. Charitably it is just playing cards close to the vest?  Not just making it harder to analyze hidden growth misses?

All in all, a quite decent performance for a new auto maker, but far from the dominance you’d expect from a $20 billion market cap brand name.

The author does not own a securities position in TSLA.  Any opinion expressed herein is the opinion of the author, not Cleantech Blog nor any employer or company affiliated with the author.

Tesla, First Solar, Better Place and Comments on a Weird Quarter in Cleantech

Wow.  This has been a really interesting few months in cleantech.

First Solar announced a $0.99 cent/Wp target within 4 years for installed with trackers utility scale in its investor deck.  That equates to around $4-5 henry hub gas price in a new combined cycle gas plant.

The scary thing is that best utility scale PV solar is already approaching the $1.50/Wp range in the LAST quarter, equating to $7-8 Henry Hub.

The Top 5 PV manufacturers announced module costs all south of $0.65/Wp.  First Solar says <$0.40/Wp in 4 years. Greentech Media says the best Chinese C-Si plants will do $0.42 within 3 years.  Screw the EU and US dumping  trade wars.  That my friends, is grid parity for a massive swath of the electricity market wholesale AND retail.

These companies are learning to work on GP margins of sub 10%.  They are getting lean, and mean and good.


Better Place finally went bust with a whimper.  $850 mm in venture money gone.  As we predicted, battery changing for electric cars is a really bad idea.  But this time, unlike the billion that Solyndra took down, nobody noticed.  Maybe because EVs are being rolled out right and left.

Why was it a bad idea? Well, 1) they would make car companies have to change their fleets, and effectively COMPETES not leverages what the rest of EV and battery world was doing, 2) it implicitly assumes fast charging and better cheaper batteries were not coming, so we needed a work around – meaning if the industry succeeds, Better Place has no advantage, if the industry fails, Better Place has no leverage, a really bad bet for an EV lover, 3) it assumes the costs of the swappable battery car and changing stations were not high, and could come down as fast or faster than conventional EVs and battery technology, 4) it means basically all fillups are full service, which I consider a really dumb idea.  We stopped that in the US in 1980s?


Tesla got profitable, sort of.  Announced a positive EBITDA.  Well, ok, but a big loss if you excluded emissions credits that are expected to be a 2013 only event –  about 12% of revenue.  Exclude those and the car manufacturing business had <6% gross profit margins and still loses a lot of money.  But a huge step forward.  Especially as the Model S is now the best selling EV.  Oh, and seriously, even GETTING GPs to positive this fast is a big deal as well as EBITDA positive under ANY circumstances this fast.  Kudos!

This is huge, because as we reported last year, Tesla by itself holds up the venture returns in the cleantech sector.

An analysis of Stifel’s monthly report on EVs and Hybrids shows the Leaf, Volt and Model S making progress, still young and small and choppy sales, but EVs as a group outpacing sales of the HEVs at the same point in their lifecycle.  EVs + HEVs is now consistently at 4% of new US sales. Not half the market, but definitely real.


But somehow, nobody’s making much profits.  This industry is looking like profits will always be elusive and come either in the bubbles, or only to the #1 or 2 player.  2013-2014 are looking like set up years for cleantech.  Our prediction? By 2015 NO ONE will question whether cleantech sectors are viable.  It will be about how fast they erode other people’s profits.

A Tale of Two EVs

Albert Einstein once said:  “Make everything as simple as possible, but no simpler.”  Pundits always pursue the former, but often fail to uphold the latter.

Such has been the case recently in regards to the prospects for electric vehicles.  Will electric vehicles be commercially successful or won’t they?  As often happens, there is superficial evidence supporting both sides of the argument.

On one hand, you have Tesla Motors (NASDAQ:  TSLA).  Tesla recently announced that it had achieved its first quarterly profit, on the back of better-than-forecasted sales of its new Model S sedan.

On the other hand, you have Fisker Automotive.  At the same time that Tesla was releasing good news, Fisker was making waves with its drastic downsizing, laying off 75% of its workforce.  Fisker’s main model, the Karma, is probably unfortunately named, as the company is certainly beset with misfortune these days.

Fisker’s bad news made more headlines than Tesla’s good news, in part because Fisker has received financial support from the U.S. government, and was thus being lambasted by some as the “next Solyndra”.  (In part, also, because bad news seems to get more attention than good news.)

So, why is Tesla doing fairly well while Fisker is definitely not?  This comparison between the two makes a strong case that Tesla simply has a better all-around product at a more attractive price than Fisker.

Moreover, it is said by many observers that Tesla has pursued a different fundamental approach to business than Fisker.  Fisker started by designing a wholly-new electric vehicle that looks cool — and the Karma is by all accounts beautiful — but only much later turned to considering how to actually manufacture it.  As a result, the costs and complexity of the car ballooned.  It’s a big challenge to source and manage thousands of parts from many vendors.  (It didn’t help Fisker when their main battery supplier, A123 Systems, had performance issues with their products and then went belly-up.)

In contrast, Tesla focused solely on developing an electric vehicle drivetrain, including the battery packs, and then outsourcing design as much as possible to other companies expert in the car business, and then focusing on making the integration/assembly of all the relevant systems as low-cost as possible.  (However, it’s an been documented to be an oversimplification to say, as some have, that Tesla’s initial model, the Roadster, is simply a Lotus Elise with an electric drivetrain.)

Time will tell if Tesla will be a long-term survivor.  No question:  succeeding as a start-up car company is very difficult.  However, Tesla may have turned the corner.

Clearly, though, there’s a long way to go and plenty of opportunities for critics to pile on.  In the wake of some bad press in February, when a New York Times reporter wrote a famously negative review of the Model S, Tesla still must fight the headwinds of skepticism about electric vehicles as a major automotive force.

Fisker’s woes don’t help.  For the too-populous segment of oversimplifiers out there, it’s easy to extrapolate Fisker’s plight to other electric vehicle companies, particularly if they have a reason to want to make the sector look bad.  To illustrate, Sarah Palin piled on by lumping Tesla with Fisker and calling them both as “losers”.

Tesla will do well to distance itself from Fisker as much and as quickly as possible, as they really do have a different tale to tell.

Stunning Cleantech 2012

It’s been a busy, ummm interesting year.  We’ve tracked profits to founders and investors of $14 Billion in major global IPOs on US  exchanges and $9 Billion in major global M&A exits from venture backed cleantech companies in the last 7-10 years.  Money is being made.  A lot of money.  But wow, not where you’d imagine it.

5 Stunners:

  • Recurrent Energy, bought by Sharp Solar for $305 mm, now on the block by Sharp Solar for $321 mm.  Can we say, what we have here gentlemen, is a failure to integrate?  This was one of the best exits in the sector.
  • Solyndra Sues Chinese solar companies for anti-trust, blaming in part their subsidized loans????????  Did the lawyers miss the whole Solyndra DOE Loan Guarantee part?  It kind of made the papers.
  • A123, announced bought / bailed out by Chinese manufacturer a month ago, now going chapter bankruptcy and debtor in possession from virtually the only US lithium ion battery competitor Johnson Controls?
  • MiaSole, one of the original thin film companies, 9 figure valuation and a $55 mm raise not too long ago (measure in months), cumulative c $400 million in the deal, sold for $30 mm to Chinese Hanergy just a few months later.  (Not that this wasn’t called over and over again by industry analysts.)
  • Solar City files for IPO, finally!


My call for the 5 highest risk mega stunners yet to come:

  • Better Place – Ummmmmmmmmm.  Sorry it makes me cringe to even discuss.  Just think through a breakeven analysis on this one.
  • Solar City – a terrifically neat company, and one that has never had a challenge driving revenues, margin, on the other hand . . .
  • BrightSource – see our earlier blog
  • Kior – again, see our prior comments.  Refining is hard.
  •  Tesla – Currently carrying the day in cleantech exit returns, I’m just really really really struggling to see the combination or sales growth, ontime deliveries, and margins here needed to justify valuation.

I’m not denigrating the investors or teams who made these bets.  Our thesis has been in cleantech, the business is there, but risk is getting mispriced on a grand scale, and the ante up to play the game is huge.


IPOs and Bankruptcies and Cleantech “Hot or Not”

Last night while watching Office reruns, I realized I’d been remiss, and a lot’s had been happening in the public equities end of the cleantech sector.  Not to mention yesterday’s billion dollar BK broiler announcement by the one-time Next Greatest Thing, Solyndra.

So, with my usual aplomb, I thought I’d simply peanut gallery what’s “Hot or Not” in cleantech.


Bled Out on the Operating Table

Solyndra – BK (and not the burger kind). Well, we wrote about it a lot, and nobody believes us.  But bad product is bad product, and high cost is high cost, regardless of how much money you throw at it.  So who’s going to calculate the impact on the DOE loan guarantee program’s projected loan losses? Not.

Evergreen Solar (NASDAQ:ESLR)  – :(  And it was such cool technology, too.  I’m very sorry to see this one go.  At one point some years back it was the savior deal of the sector.  But we are in a race to cost down or die. Not.


Filed, Not Yet Hell for Leather

Enphase – I’m very very interested in seeing these guys make it.   Lots of growth.  Very thin margins so far.  Product costs looks miserably high.  Need to cost down like a banshee running from the Bill Murray.  But you’ve got to love the category killer potential and how fast they’ve executed.  First microinverter guy to manufacturing maturity eats the others like oatmeal (sloppy but eaten nonetheless). Hot.

Silver Spring – Hmmmmmmmmh.  Home run potential, but what’s the term?  Very high beta?  These contracts are massive, far strung, very very tight margin.  They’ve shown they can get the growth.  But with long lead time sticky contracts, it’s about managing costs during slippage and change-orders well, and it’s a very competitive business.  One blown contract gives back all the profits on the last 8.  But, give kudos for getting this far and making it to be a real player.  Now we’ll see if you can execute. Hot.

Luca Technologies – Hello?  Are you serious?  I read this S-1 cover to cover.  I had my technologist read it and go find their patents.  We love this area.  The concept of microbes for in situ is old as can be, but very very interesting..  The challenge is always cost and performance (not really a new nutrient mix?).  How do you get the bugs, nutrients, whatever you’re doing, down the hole and into the formation far enough and cheap and effectively enough to make a difference.  But in the entire S-1 and website, there is not a single technology description, fact, proof point or ANYTHING that suggests they’ve actually cracked the real nut.  The few numbers they do mention are not even to the ho-hum level.  Did a real investment banker really sign up to this?  Who wrote this?  Their PR guy with a liberal arts studies degree?  Really?  This smacks of a “trust us I’m Jesus and daddy needs an exit” deal.  In reality, probably interesting, but still very very very very very very very early science project.   Not.


We have a whole collection of biofuels stocks to discuss now.

Solazyme (NASDAQ:SZYM) – half of its 52 week, less than a buck over its low. Not.

Kior (NASDAQ:KIOR) – Somebody correct me, but did the filings really indicate Khosla put money IN to this IPO?  And it got off at low end of the range even after that? From one of their filings: “In conjunction with the Issuer’s IPO, an entity affiliated with the Reporting Persons purchased 1,250,000 shares of Class A common stock, resulting in an increase in beneficial ownership by the Reporting Persons by that amount. The
purchase was made at the initial public offering price of $15.00 per share, for an aggregate purchase price of $18,750,000. The source of funds used to purchase the shares of Class A common stock was Khosla’s personal assets.” At least it’s money where it’s mouth is.  Not.

Amyris (NASDAQ:AMRS) – 58% of its 52 week high, 20% over it’s low. Not.

Gevo (NASDAQ:GEVO) – 40% of its 52 week high, c. 20% off it’s low. Not.

Codexis (NASDAQ:CDXS) – 55% of its 52 week high, c. 20% off it’s lows. Not.

I’d comment on the fundamentals of each one, but I don’t want you to think I’m depressed.  Oh, by the way.  Did I ever tell you the story about the cleantech sector’s magically changing cellulosic biofuels business plans to “cellulosic bio-anything-but-fuels” plans as people finally woke up and realized how tough using lousy feedstocks and high cost processes in a commodities market actually is.  Of course, careful you don’t change from targeting fuels to making feedstock for dirt cheap who would want to be in that business commodity chemicals or specialty chemicals with a global aggregate gross margin market less than your cash on balance sheet.

And a Few Tidbits

Advanced Energy (NASDAQ: AEIS) – I still really like this company.  Somebody’s going to own inverters.  And the numbers look very interesting.  Very. Need to dig deeper. Hot.

American Superconductor (NASDAQ:AMSC) – Ummm.  Do you believe their wind business ever recovers?  One customer.  Buying a competitor with one customer.  Both in China.  Customer doesn’t like single supplier risk where the supplier makes high margins?  What did you think was going to happen?  Ugly ugly story.  Very real possibility that they trade on a log curve to straight zero.  Some chance of sunshine, but I’d cancel the picnic. Not.

A123 (NASDAQ:AONE) – I really really really want this to work.  But what’s the path to profits?  Not feeling it. Not.

Tesla (NASDAQ:TSLA) –  “Don’t worry, the NEXT car will fix my company’s fundamental problems” – quote attributed to the Tesla CEO who replaces the next Tesla CEO. Not.

Active Power (NASDAQ: ACPW) – Hey, did anyone notice these guys are growing revenues AND margins?  A long haul, but keep it up!  Need careful consideration before I’d jump into flywheels, but someone deserves a ton of credit as coach of the year.  Hot.

Satcon (NASDAQ:SATC) – Hammered, but still a market leader.  Got to think about this one – it’s historically traded for more than it’s fundamentals justified, but with PV Powered and Xantrex snapped up, hard to imagine they stay independent for long. Hot.

SunPower (NASDAQ:SPWR)  – Wow.  Total. No guts no glory.  Highest cost producer, shall we call it the “performance queen”.  I do like this bet by Total, but it takes guts.  But when a market leader’s stock’s been hammered that far down somebody’s got to move and Total did . . .  Whether an individual investor can play is another story. Hot.

Ascent Solar (NASDAQ:ASTI) – Holy star solar batman!  These guys can sell ice to eskimos are have always been great R&D guys.  Still maybe the highest cost CIGS process known to astronauts.  I like these guys, but I’m not sure more cash fixes anything. Not.

Solon – What does “New US operational strategy” mean?  It means solar is a game of scale and execution.  Not.


Back to the Future

As posted previously, one of the big challenges the cleantech community faces is the reliance of many pivotal technologies on rare earth minerals that are mainly located in China and increasingly subject to supply curtailment.  Neodymium is of particular concern for so-called permanent-magnet motors and generators.

In response, a number of companies are seeking alternatives to neodymium-based permanent magnets.  According to this recent article in The Economist, Toyota (NYSE: TM) is believed to have exhumed an AC induction motor designed initially the brilliant/mad (take your pick) scientist Nikolai Tesla in 1888.

This is yet another example of cleantech innovations that resuscitate long-lost ideas discarded way-back-when for a certain reason and re-examining them in light of improvements and advancements that had been made in the intervening period that can eliminate the challenges heretofore thwarting their successful development.

In this particular case, the advent of semiconductors and microcomputer-based controls enables modulation of the induction motor’s speed at thousands of times per second — something that Tesla could only have dreamed about.

I spoke in June with Joe Kovach, the head of the newly-formed Corporate Technology Venture group at Parker Hannifin (NYSE: PH), who said that one of his priorities was to mine some of the company’s old overlooked intellectual property that had been essentially discarded due to then-infeasibility and view those prior discoveries through the lens of the spectrum of technologies that are now available today.

I suspect that lots of progress can be made in the cleantech space if more of us were to similarly go back to the future.

Young Cleantech IPOs = Venture Paradise Found?

It struck me the other day that I may have been looking at the recent spate of cleantech IPOs backwards.  Perhaps instead of lamenting the dearth of profitable healthy companies going public on major exchanges  in our sector, what we should be considering is whether early and still risky IPOs mean cleantech venture capitalists are finally finding a capital path and exit model that works, akin to the IT and biotech venture models that delivered such terrific returns up until the internet crash.  And the question then is, can these IPOs continue, and perform and validate the broad strategy that our tech venture capital sector has been following in cleantech?

Our American institutional venture capital sector largely missed the cleantech AIM boom in Europe.  Missed the Carbon trading boom in Europe and Asia.  Missed the Chinese solar manufacturing boom.  And missed the corn ethanol boom in the US, the wind project developer boom in the US and Europe, and the sugar cane ethanol boom in Brazil.  Oh, and missed the shale gas boom in the US.  Each of which were tens to hundred billion + dollar booms. All the money in those sectors was made largely by investors and players outside the traditional venture arena – though some exceptions in each prove the rule.

Instead the American venture capital and tech sector eschewed what proved to be a huge number of highly profitable investment areas in cleantech as “not venturable bets”, and has poured c. $15 -$20 billion + into thin film /advanced solar, cellulosic biofuels, solar finance, smart grid, automotive/energy storage technology.  One cynical argument is that in a hubristic attempt to avoid the “low tech”, policy driven and capital intensive sectors in cleantech, our venture sector overreached into technology risk, and then once they found the policy risk and capital intensity waiting for them on the other side busily moving the bar, they started clamoring for M&A, IPOs, and government funding and policies to bail them out. In any case, the cleantech deals are hurting for a lot more cash and likely need early IPOs to make the sector viable long term, but the first generation of cleantech VCs have learned lots of lessons.

BUT, are we now on the cusp of a model capable of anchoring returns for these last few years of the 2nd and 3rd waves of cleantech venture capital investment anyway –  a model perhaps described as 1) raise larger funds, 2) take more concentration early in technology risk curves, 3) stack on capital fast 4) take heavy leverage with government dollars, 5) IPO early leaving money on the table in terms of tech boom style multiples, but leaving a lot of technology and scale up risk for the public markets.  Time will tell.

Critical to this model would be 1) the aftermarket performance of the the first wave of these IPOs, and 2) willingness of policy makers to continue to fund.  So a quick look at the Big 4 of US venture backed cleantech IPOs to date hopefully tells us something.  Excluding for this analysis earlier US cleantech powerhouse deals SunPower and First Solar, which came up a different financing paths and well before the policy and FIT booms that drove most of the first generation of solar profits.

A123 – Went IPO on the back of having neat batteries for EVs.  Still losing money.

Amyris –  Not sure what it went IPO on.  Still losing money.

Codexis – Went IPO on the back of a strong R&D partnership and contract with Shell.  Still losing money.

Tesla – Went IPO without the product it needs to breakeven built on the back of DOE money and car sex appeal. Still losing money.






Aftermarket performance, key to the actual returns of the LPs who usually aren’t out at the IPO and even more critical to willingness of the public markets to underwrite more deals, hasn’t been awful.  Three of the four doubled from the IPO price before peaking and giving back one to three quarters of value from their peak.  Two of them are still above listing, mean 90 day post IPO performance is a positive 27%, only one struggled to see a strong pop, and the mean performance to date since IPO price is+9%.

Of course, the largest, most mature, and earliest bellwhether, A123, has been on a long slow slide.  Meaning overall dollar weighted average performance would be a -6%.  And 90 day performance is only 3% with performance to date a -8% if calculated on the 1st day close not the IPO price, meaning it may be more underwriters managing issuance price than true aftermarket performance.  If benchmarked against the S&P 500, foreign cleantech IPOs and other non cleantech US IPOs it might not look so good.  But time will tell.

Will these first Big 4 hold out for solid returns, or slide like A123?  What portion of their businesses will get built and eventually become profitable?  Will they be able to raise more capital?  Will the next crop of rumored and planned cleantech venture backed IPO candidates from BrightSource to KiOR to Silver Spring to Opower to Bloom Energy make it through?  How much cash will they need before they do/what kinds of aggregate cash on cash returns multiples will we see, and will they too hold up when the public markets are asked to support billions of capital into dozens of these deals needed to anchor the cleantech venture sector?