Posts

San Francisco Doubles Taxi Fleet while Cutting Gasoline Use in Half

from original article at Clean Fleet Report

San Francisco has about 1,500 taxis, double its fleet of 15 years ago. The total gasoline used each year by those 1,500 taxis is about half the total used by the 750, in years past. San Francisco taxi operators are saving millions by with a fleet that is 92 percent hybrid or fueled with CNG.

San Francisco taxis average a punishing 90,000 miles per year, driving day and night on smooth streets and potholes and killer hills. Under these conditions, gasoline for a traditional taxi costs over $20,000 per year. For a Prius taxi, under $7,000. Even if a taxi operator spent an extra $2,500 every other year for a new hybrid  battery pack, they save a fortune.

San Francisco taxis have reduced gas use by 2.9 million gallons per year and lowered greenhouse gas emissions by 35,000 tons annually.

Gavin Newsom and Paul Gillespie

Lt Gov Gavin NewsomLt Gov Gavin Newsom

California Lt. Gov. Gavin Newsom joined the celebration yesterday in having the nation’s greenest taxi fleet. Back in 1997, as one of the city’s Commissioners he was asked to chair a task force to help taxi operators and drivers. Newsom recognized the potential for cleaner taxis, since he personally was driving the General Motors EV1.

A Taxi Commission was formed and taxi driver Paul Gillespie was made Commission President. Paul had been a student in Michigan when the 1973 oil embargo hit and the nation awakened to the need for fuel efficient cars. Paul looked at the 1997 taxi fleet consisting primarily of Ford Crown Victoria’s that could get 15 mpg in theory and 10 mpg in typically SF taxi use. Early purchases were made of taxis that ran on CNG, not gasoline.

Then Ford Fusion Hybrids and Toyota Prius Hybrids became popular because they quickly paid for themselves in fuel savings, reduced health damaging air pollution, are produced even less greenhouse emissions. To help finance buying hybrids, Gillispie got an initiate put in place to charge cabbies an extra $7.50 per shift. He took heat from fellow drivers, until they started seeing an extra $20 to $40 a shift from fuel cost savings. Paul Gillispie now leads a non0-profit Low Carbon Taxis. lowcarbontaxis.org

Gavin Newsom went on to being elected mayor of San Francisco, whose citizens widely support climate solutions. Like any political leader, in 2008 he took criticism from many quarters for targeting a 20 percent greenhouse gas in the taxi fleet over the 1990 level. He was all smiles when it was announced that a 49 percent reduction in GHG has now been achieved. From clean cars to electric transit to solar rooftops, San Francisco is now recognized as one of the greenest cities in the world. Gavin Newsom was recently elected Lt. Governor of California.

Ford Brings New Hybrid and CNG Vehicles to Taxi Fleets

Ford C-MaxBy working closely with San Francisco Yellow Cabs and Luxor to meet their fuel economy and emission objectives, Ford has been able to grow its business even as its cash cow Crown Vic fades in popularity. Sixty-seven percent of the SF Taxi fleet is Ford. Escape Hybrids are seen everywhere shuttling business people, tourists, and car-free city dwellers. With this being the last year for the Escape Hybrid, Ford is well positioned with the C-MAX Hybrid – a crossover SUV expected to deliver over 40 mpg. Even better fuel economy will come with the midsized Ford Fusion Hybrid with an expected fuel economy of 46 mpg. The C-MAX Hybrid and Fusion Hybrid put pressure on Toyota whose Prius and Camry Hybrid are also widely used by SF Taxi owners.

Will Taxi Fleets Use electric cars?

Since a typical taxi consumes over $20,000 of gasoline per year, I asked Ford’s Fleet Marketing Manager, Gerald Koss, about the potential for Ford’s exciting new plug-in hybrid offerings the C-MAX Energi and the Fusion Energi. Both cars have the ideal five-seat, larger cargo space needed in taxis. Both should operate about 30 miles in electric mode before efficient gasoline engines engage to give them hybrid fuel efficiency. Koss sees the hybrid versions strongly outselling plug-in hybrids with taxi fleets, although PEV pilots could occur in several cities. In a typical 300-mile taxi day, the electric might only help with 10 percent of the driving, require a new charging infrastructure, and added costs. Koss expects the C-MAX Hybrid to do quite well with taxi fleets.

Better Place Switch StationEven fast charging is too slow for a taxi operation. A fully-charged battery is needed in five minutes for the electric car to have potential in taxi fleets. Better Place has installed battery switch stations for taxi, fleet, and consumer use in Japan, China, Israel and other countries where electric car lithium battery packs can be robotically replaced in less than five minutes. Better Place, with support from the U.S. Department of Transportation via the Metropolitan Transportation Commission, announced a commitment to bring a switchable battery, electric taxi program to the Bay Area in partnership with the cities of San Francisco and San Jose to further cement the region’s position as the “EV Capital of the U.S.” By 2014, the program envisions deployment of four battery switch stations in the San Francisco to San Jose corridor that supports a fleet of zero-emission, switchable taxis.

Taxi fleets can move faster than most consumers in adopting alternative fuels and electric vehicles because they can support a fleet with centralized fueling, battery switching, and maintenance teams. Look for a number of exciting pilot fleet tests. Next time you hail a taxi in a major U.S. city, it is more likely to at least be a hybrid-electric because these cars pay for themselves in months in reduced gasoline use.

Japan’s Crisis Hurts Sales of Hybrid Cars and EVs

The people of Japan are courageously moving forward after the devastation of a 9.0 earthquake, a tsunami that ripped apart buildings and roads, and a nuclear crisis that now threatens their food and water. The Japanese economy depends in no small measure on the success of its automotive industry and its complex eco-system of component suppliers and service providers.

Just when gasoline prices are rising and hybrid cars are again hot sellers, the crisis is making hybrids and new electric cars tough to get. Let’s look at the impact on three big sellers of hybrids and electrics.

Toyota, Honda, and Nissan are hurt less than expected because they have diversified globally, including billion dollar plants and operations in the United States. The most advanced hybrids and electric cars, however, are first produced in Japan. Every supplier must be able to produce for new cars to be assembled in Japan. Once assembled, it will be challenging to move them across roads not ripped apart. It will take time to return shipping ports to normal after the recent tsunami tossed cars and railcars around like toys. Plants and operations require MW of electricity, now constrained by nuclear plant shutdowns.

Toyota

Toyota reports that all 13 North American vehicle and engine plants are running normally, although overtime has been curtailed to maintain adequate inventories of parts that come from Japan. Toyota now makes 12 different models in North America, including high-volume vehicles such as Camry, Corolla, RAV4, and Lexus RX 350, and nearly 70 percent of all Toyota and Lexus vehicles sold in the U.S. are made in North America.

Suppliers in North America provide most parts and materials for Toyota’s North American-built vehicles. Toyota has temporarily stopped all Japanese production of vehicles, but it is restarting production of replacement parts for cars already sold and parts necessary for overseas production. In general, Toyota is seeing adequate inventories at most dealers.

Prius vehicles are built in Japan, Steve Curtis with Toyota told me that the Tsutsumi plant where the Prius is made was not damaged by the earthquake. Production depends on more than the plant condition. It depends on a complex web of suppliers, supply of electricity, roads that can be crossed by employees and trucks deliveries parts. Toyota has delayed 12 Japan plant openings until March 26.

The tragedy in Japan has not delayed the U.S. launch of the new larger Prius V Crossover SUV and the Prius Plug-in Hybrid, not the new Toyota small electric city car. It has delayed the launch of the Prius wagon and minivan models in Japan from the original plan for the end of April. Reuters  Article

Since the production of current Toyota and Lexus hybrids, depends on a complex supply chain, and shipment to the UnitedToyota Prius 37k 150x102 Japan’s Crisis Hurts Sales of Hybrid Cars and Electric Cars States depends on roads and ports, Clean Fleet Report forecasts that shipments of Prius and other hybrids will be delayed and reduced for months.

Only one of three Toyota hybrid battery plants in Japan sustained limited damage from the earthquake. The other two plants are located in central Japan and were not affected. Panasonic and Sanyo are Toyota’s primary suppliers of nickel metal hydride and lithium batteries; their production status is uncertain.

Car dealers are betting that the supply of hot selling hybrids will be tight, especially with gasoline costing $4 per gallon in parts of the country. Auto News reports that dealers that were averaging $1,700 discounts on the Prius are now getting $800 premiums.

Honda

Honda is globally diversified in manufacturing and suppliers. With nine U.S. plants, Honda has invested more than $12.7 billion in its U.S. operations. The company employs nearly 25,000 associates and annually purchases $12 billion in parts and materials from more than 530 U.S. suppliers.

For hybrids such as the Civic Hybrid, Insight, CR-Z and Fit Hybrid, Honda also heavily depends on Japanese suppliers, including advanced battery suppliers such as Sanyo. At the heart of the 2012 Civic Hybrid and Honda’s new electric cars are the lithium-ion batteries built at its Blue Energy join venture (JV) with Japan’s GS Yuasa; the battery plant is in Fukuchiyama, Kyoto, Japan.

Last week, Honda had announced plans to resume production of major Japanese plants on March 20. Now these openings are delayed to March 27 or beyond. Like all major manufacturers, Honda depends on a complex eco-system of suppliers and joint ventures. Some plants have been damaged and roads to move parts have been ripped apart.

Nissan

Nissan has delayed March 21 plans to restart production of parts for overseas manufacturing and repair parts, based on parts availability from suppliers, at these plants Oppama, Tochigi, Kyushu, Yokohama, Nissan Shatai. Vehicle production will be constrained by inventory availability. The Iwaki engine plant remains closed.

LEAF battery 150x150 Japan’s Crisis Hurts Sales of Hybrid Cars and Electric CarsNissan recently shipped 600 Nissan LEAFs before earthquake and tsunami damage. At the Port of Hitachi, however, Nissan lost 1,300 U.S.-bound Infiniti and Nissan cars to the tsunami. Nissan had plans to soon have 10,000 LEAFs built at the Oppama plant. Now Nissan’s hopes of catching-up with U.S. deliveries of the Chevrolet Volt have faded in the near term.

Starting next year, Nissan’s Tennessee assembly plant will have the capacity to build 150,000 Nissan Leaf electric cars per year, and 200,000 lithium-ion battery packs per year. The lithium packs could also be used in future Nissan hybrid cars. The Tennessee battery production is by AESC, a joint venture of Nissan and NEC.

Once production returns to normal, U.S. shipments could still be delayed. Japan faces a fuel shortage. Fuel is needed to transport cars to ports, to run port drayage trucks and lifts, and to run ships. Even electric cars still depend on diesel to move them to market.

Honda Fit Hybrid Challenges Toyota Prius Leadership

Honda Fit Outsells Prius

In January, the Honda Fit outsold the Prius in Japan. Prius had been the number one selling car in Japan for 20 months. Half of the Fits sold were the new Fit Hybrid, which delivers 71 miles per gallon (MPG) using the Japanese JC08 test cycle. In 2012, both the Fit Hybrid and new Fit EV are expected to start selling in the U.S.

The Honda Fit has been a popular small hatchback, with over 3.5 million sold globally. With five doors, seating for five, and flexible cargo space it is big enough for most, yet small enough to fit in those precious city parking spaces. Drivers like the sport fill and handling. Starting at around $15,000, the Honda Fit delivers 31 mpg, the mileage of many hybrids.

Honda Fit Hybrid 71 MPG

The Fit Hybrid removes pain at the pump with the 71 mpg in the Japanese test cycle which emphasises slow city driving at 16 mpg; by comparison the Prius is 77 mpg. Power is delivered from the IMA electric motor and from an efficient 1.3-liter i-VTEC engine. The battery for the hybrid system is located under the rear cargo and enables the Fit to share the same flexible seating configurations as the rest of the lineup without sacrificing interior comfort that is unique to Fit.

The Fit offers more room than outward appearances suggest. It has a B-segment exterior, but a larger C-segment interior. In the back is 20.6 cubic feet of cargo, but drop the back seat and you have 50.7 cubic feet. If that still is not enough for your ladder, home project, or surfboard, then you can flatten the front seat for added feet. In Japan, the passenger seat can even rotate for easy in-and-out or socializing with others.

Bigger and Better – Honda Fit Shuttle versus Toyota Prius

Toyota has no intention of letting Honda hold the number one spot in Japan, the U.S., or anywhere else. Toyota has expanded the popular Prius into a family of four models:

* 2011 Prius – world’s best selling hybrid
* 2012 Prius v –midsized wagon with 40 mpg goes on sale Summer 2011
* 2012 Prius c Concept – city car hybrid goes on sale by Summer 2012
* 2012 Prius Plug-in Hybrid – best mileage of any Prius goes on sale by Summer 2012

If you’ve been looking for great mileage from an SUV, crossover, or wagon, take a look at the new Prius v. It will share the current generation Prius’ platform and Hybrid Synergy Drive technology. Featuring a compact exterior yet spacious interior, the Prius v will feature over 50-percent more interior cargo space than the current Prius, while being almost as aerodynamic. The Prius v will compete with new crossover hybrids like the Ford C-MAX Hybrid. The Prius v will use NiMH batteries, just as the 2011 Prius. Next year, Ford will start delivering lithium batteries in all hybrids and electric cars.

Honda has countered by unveiling a longer Honda Fit Shuttle available with the current efficient ICE drive system and the new hybrid drive system. This compact wagon can be examined on Honda’s new Fit Shuttle Japanese website.  The wagon is expected to be unveiled at the Geneva Auto Show next month. Unfortunately, Honda is unlikely to offer this larger Fit in the U.S., at least for now.

Honda Fit EV

Honda unveiled the all-new Fit EV Concept electric vehicle at the LA Auto Show in November. In 2011 the Fit EV will be in fleet trials at at Google, Stanford University, and possibly others. In 2012, the car will no longer be a concept as customers go to dealers and buy the Fit EV. The Fit EV will compete with the larger Nissan LEAF, the Ford Focus Electric, and the Toyota FT-EV.

The Fit EV is designed to meet the daily driving needs of the average metropolitan commuter and utilizes the same 5-passenger layout found in the popular Fit hatchback. When the Fit EV production model is introduced, it will be powered by a lithium-ion battery and coaxial electric motor.

The high-density motor, derived from the FCX Clarity fuel cell electric vehicle, delivers excellent efficiency and power while remaining quiet at high speeds. The Fit EV will have a top speed of 90 mph.

The Fit EV will achieve an estimated 100-mile driving range per charge using the US EPA LA4* city cycle (70 miles when applying EPA’s adjustment factor). Driving range can be maximized by use of an innovative 3-mode electric drive system, adapted from the 2011 Honda CR-Z sport hybrid. The system allows the driver to select between Econ, Normal, and Sport to instantly and seamlessly change the driving experience to maximize efficiency or improve acceleration. While in Econ mode, practical driving range can increase by as much as 17 percent compared to driving in Normal mode, and up to 25 percent compared to driving in Sport mode. Acceleration improves significantly when in Sport mode, generating performance similar to a vehicle equipped with a 2.0-liter gasoline engine.

Hybrid and Electric Car Battle with Toyota and Ford

In their battle for hybrid and electric car leadership, both Honda and Toyota are learning a lesson from Ford – price matters and therefore manufacturing cost matters. Ford is offering 10 to 14 new models on a global C-car platform  with many chassis and components being common across a range of cars, SUVs, and crossovers. Ford will lower manufacturing costs, use high-volume common parts, and improve efficiency. Ford will increasingly enable customers to select a vehicle, such as the Focus, with powertrain options ranging from efficient engine to hybrid to plug-in hybrid to pure battery electric.

C-MAX Energi and C-MAX Hybrid are two of 10 to 14 new models that Ford will launch around the world based on its new global C-car platform – Ford’s first truly global One Ford platform. Ford’s new generation of C-segment vehicles will be sold in more than 120 markets and will account for more than 2 million units annually. The C-segment accounts for one in four cars sold worldwide today and, in conjunction with the B-segment, Ford expects it to rise to 50 percent of all cars sold globally by 2013.

Honda is wise to expand its popular Fit into a family that includes a larger wagon, a 71-mpg hybrid, and an exciting electric car with the potential to become the EV price leader. In a growing battle for fuel-efficient family offerings with Toyota and Ford there will be one clear winner – the customer.

What’s Beyond Zero Emissions Vehicles?

by Paul Hirsch

The automotive industry has invested billions in alternative fuel technology since that first Prius rolled off its assembly line. And these days a growing portion of that investment has been focused on zero emission technologies, such as battery electric vehicles (EVs) and hydrogen fuel cells.

Yet as a professional tasked with commercializing the next generation of alternative fuel vehicles, I can’t help but feel like zero just isn’t good enough. Pushing emissions off board and upstream to a dirty power plant may solve the automaker’s problems, but it doesn’t solve the Earth’s.

Which is why I was truly excited when, last week at the Los Angeles Auto Show, Honda introduced their “total energy management system.” The system consists of an EV, like the electric Fit they debuted at the show, as well as a Honda-developed solar charging station. An experimental solar hydrogen station is already being used to power the company’s FCX Clarity fuel cell vehicle. Honda is not only thinking about how many EVs they can put on the streets, but how to guarantee their customers a clean energy commute day after day.

This is not the first attempt by an automaker to offer its customers a clean energy solution. Tesla Motors has promoted a Solar City charging station for its electric Roadster, demonstrating Elon Musk’s strategic interest in providing the clean electrons to power his clean car (Musk is CEO of Tesla and led the initial funding of Solar City). The Tesla-Solar City project and Honda’s recent announcement highlight a new opportunity for the auto industry – end-to-end sustainable personal mobility.

Where the industry goes from here is anyone’s guess, but the possibilities are promising. Toyota already operates a housing development subsidiary in Japan that offers homes equipped with solar panels and rainwater recycling systems. Imagine the experience if this business were integrated with Toyota’s automotive operations: when you buy into an “ecommunity” of carbon-neutral dwellings, selecting the battery range of your plug-in vehicle could become as routine as picking out your home’s paint color or bathroom tile. Or better yet, you could select to participate in a community car share program to accommodate a less frequent need for your own car.

This vertical integration of energy generation stations with the vehicles that demand their energy would go a long way toward aligning auto industry objectives with the needs of the planet. If automakers were also fueling their vehicles, they would have a strong incentive to make cars as efficient as possible. And that vertical integration would bring us much closer to a future of sustainable personal mobility.

Paul Hirsch is a Senior Product Planner at Toyota.

2010 Prius Delivers Record Mileage and Accelerates Plug-in Plans

By John Addison. Toyota achieves a record 50 miles per gallon with the new 2010 Prius, which just made its formal debut at the North American International Auto Show. This article also covers Toyota’s latest plug-in hybrid and EV announcements.

Since the Prius was first went on sale in Japan in 1997, continuous improvements have been made. My 2002 Prius has a combined EPA rating of 41, and that has been its actual mileage. Newer models are rated at 46 mpg. The new 2010 should be rated at 50 miles per gallon, or better. Toyota

In addition to normal driving, Prius now comes with three selectable modes – EV, Eco and Power – to accommodate a wide range of driving conditions.

Hybrid components like the inverter, motor, and generator are now smaller and lighter. The new midsized 2010 Prius improves fuel efficiency with a 0.25 coefficient of drag making it the world’s most aerodynamic production vehicle. Hybrid components like the inverter, motor, and generator are now smaller and lighter. The new beltless 1.8-liter, 4-cylinder gas engine with 98 horsepower, runs at lower RPMs at highway speeds for better fuel efficiency and improved uphill performance. An exhaust heat recovery system, exhaust gas recirculation, and an electric water pump contribute to a more efficient hybrid system with a net horsepower rating of 134.

An exciting new option is the solar moonroof using Kyocera PV that automatically powers a ventilation system on hot days. This system allows fresh air to circulate into the vehicle, cooling down the cabin so that the A/C doesn’t have to work as hard, conserving battery power. The solar roof will be paired with a remote air-conditioning system that is the first in the world to run on battery power alone. LED head lamps are another exciting energy saving option.

The Prius will face increased competition. The new Honda Insight 4-door sedan, 5-seater, with an Ecological Drive Assist System is expected to be priced for thousands less than the Prius. Honda will start selling the Insight in North America in spring 2009. The Insight will have a combined EPA rating of 41 miles per gallon, over 20 percent less than the 2010 Prius.

The new Ford Fusion Hybrid midsize 4-door sedan will be on sale in the US this next spring, with an EPA certified 41 mpg rating in the city and 36 mpg on the highway. The Fusion Hybrid and Mercury Milan Hybrid may travel up to 47 miles per hour in pure electric mode. The Advanced Intake Variable Cam Timing allows the Fusion and Milan hybrids to more seamlessly transition between gas and electric modes.

Toyota is also accelerating its roll-out of plug-in hybrids. Beginning in late 2009, Toyota will start global delivery of 500 Prius plug-in hybrids powered by lithium-ion batteries. Of these initial vehicles, 150 will be placed with U.S. lease-fleet customers.

The first-generation lithium-ion batteries powering these plug-in hybrids will be built on an assembly line at Toyota’s Panasonic EV Energy Company battery plant, a joint-venture production facility in which Toyota owns 60 percent equity. During its development, the new Prius was designed and engineered to package either the lithium-ion battery pack with plug-in capability, or the nickel-metal hydride battery for the conventional gas-electric system.

Toyota plans to make a hybrid drive system optional on all vehicles by 2020. At the North American International Auto Show, Toyota confirmed its plan to launch a battery-electric vehicle (BEV) by 2012. The FT-EV concept shares its platform with the revolutionary-new iQ urban commuter vehicle. Toyota continues to give customers an increasingly exciting selection of fuel-efficient hybrids, plug-in hybrids, and electric vehicles.

John Addison publishes the Clean Fleet Report. His new book – Save Gas, Save the Planet – goes on sale March 25.

A Passion for Plug-ins

By John Addison (8/7/08). Toyota President Katsuaki Watanabe spoke about his dream of building a car that could cross the United States on a single tank of gasoline. A plug-in hybrid running on E85 would potentially use only one gallon of gasoline every 500 miles in a blend with five gallons of ethanol, with the rest of the energy being fueled by electricity and biofuel.

In a recent article, I shared the stories of fleets and enthusiastic advocates and individuals who have converted their hybrids to be plug-in hybrids. Most people, however, will wait for vehicles that are designed from the ground-up to be plug-in hybrids. These vehicles will be warrantied by major manufacturers. Future plug-in hybrids will have larger electric motors, smaller engines, lithium battery stacks, and optimized control systems.

GM has announced plans for new plug-in sales by the end of 2010. Toyota is more likely to first deliver hundreds of fleet evaluation cars in 2010 and may follow with sales in 2011. Because both may start with limited numbers of vehicles and long wait times, it may be 2011 before you could get delivery of a new plug-in hybrid.

Toyota has put ten of its prototype plug-in hybrid into test applications in Japan and California. These test vehicles are Priuses with nickel metal hydride (NiMH) batteries. Toyota is being a bit secretive about its new plug-in hybrid. The car is likely to be smaller and lighter than the Prius and use lithium batteries. By carrying less weight and more advanced batteries, Toyota can give the vehicle greater electric-only range, possibly 40 miles which would accommodate the daily range requirements of 78% of all U.S. drivers.

General Motors has made clear statements that it will start taking orders for the Chevy Volt from U.S. consumers by the end of 2010. Last December, I attended a General Motors showing of its Chevy Volt – an elegant four-door sedan shown in this photo which I took. One GM designer admitted that the Mercedes CLS gave some inspiration for the Volt. The Chevy Volt can be driven 40 miles in electric-mode using 16kW of lithium batteries, before its small one liter engine is engaged. 16kW is twelve times the storage of my Prius NiMH batteries.

The Volt uses an electric drive system with a small ICE in series that is only used to generate added electricity, not give power to the wheels. GM’s modular E-Flex propulsion could be adapted to various engines including diesel, fuel cells, and potentially battery-electric.

Ford currently has the SUV with the best fuel economy in the Ford Escape Hybrid. A number of fleets have contracted with vehicle system integrators to convert the Escape Hybrid to be a plug-in. Ford delivered twenty of its own Escape Plug-in Hybrid prototypes to major electric utility SCE. The SUV uses a 10 kWh lithium-ion battery pack from Johnson Controls-Saft. The PHEV uses a blended operating strategy, and delivers an equivalent 30-mile all-electric range.

A hybrid battery might use a state of charge depletion window of twenty percent. A plug-in hybrid conversion kit might use a state of charge depletion window of 80 percent, and only be willing to warranty the battery for two or three years. GM will want to offer customers ten year warranties by having 150,000 mile target lives for their batteries. GM will likely use a state of charge depletion window of 50 percent with the Volt. While GM and Toyota see long-term market share advantage by being first to market with a plug-in, other auto makers are cautious.

Daimler is actively expanding the use of electric drive systems in a number of vehicles. The Mercedes Smart Car will be offered as an electric vehicle. The larger Sprinter Van will include a plug-in offer in the future. Several fleets have demonstrated Sprinter Vans converted to be plug-ins. In the future, Daimler may offer its own Plug-in Sprinter.

Plug-in hybrids will face growing competition from electric vehicles, which have more limited range, but have no engine and therefore never require a fuel like gasoline or diesel. At times some of these EV makers have floated the idea of plug-ins in the future. Such comments have come from Nissan-Renault, Tesla, BYD, and others.

In this era of record gasoline prices, people are using many successful approaches to spend less for gas and cut emissions. A record number are cutting personal miles by taking part in employer flexwork programs, car pooling, using transit, and grouping trips. Households are maximizing use of their most fuel efficient vehicles while leaving the gas guzzler parked. More are buying fuel efficient cars. Plug-in hybrids will become a growing part of the solution to save gas and slow global warming.

Plug-in hybrids are destined to be a major success. According to the California Electric Transportation Coalition, if automakers begin producing plug-ins within the next few years, 2.5 million cars could be plug-ins by the year 2020, saving 11.5 million tons of CO2 and 1.14 billion gallons of gasoline each year.

Complete Article about New Plug-ins

John Addison publishes the Clean Fleet Report.

Plug-in Drivers Get Charged

By John Addison (7/31/08). In 1971, a bright engineer, Dr. Andy Frank, was looking to the future. He knew that oil production had peaked in the U.S. and that cheap oil would later peak globally. He calculated how to get 100 miles per gallon, and then he built a hybrid-electric car.

A few years later there was a crisis in the Mideast. Oil tankers stopped moving through the Suez Canal. There were hour gas lines in the United States with engines fuming emissions and drivers fuming with anger. Gasoline was rationed. The crisis intensified Andy Frank’s commitment to build great vehicles with outstanding fuel economy. He has been on that mission ever since.

Andy Frank took me for a ride in a big GM Equinox SUV that got double the fuel economy of a conventional SUV because he converted it to a plug-in hybrid. The ride was the same as in any other SUV except it was more quiet. Fuel economy doubled because much of the time the vehicle ran on electricity with the engine off.

This vehicle was typical of many projects. The large engine was removed. An engine less-than half its size was put in its place. His team saved hundreds of extra pounds by replacing the standard GM transmission with a smaller and lighter continuously variable transmission. Even with an added electric motor and lithium batteries, the vehicle weighed less than a standard Equinox. The air conditioning and other accessories ran electrically, instead of placing mechanical demands on a large engine. Converted to be powered electrically, the air conditioning could run with the engine off.

Andy Frank is the father of plug-in hybrids. His students at U. C. Davis have gone on to be some of the brightest minds in automotive design and transportation management. Over the past 15 years, he and his students have built over ten different plug-in hybrids. They have ranged from sport cars to full-sized SUVs. Typically these PHEV can go over 40 miles (64km) in electric-only range and weigh no more than their standard counterparts. U. C. Davis Team Fate Vehicles

The idea of plugging-in is not new. We are in the habit of recharging our mobile phone every night. Soon, we may also be recharging our vehicle every night. Plug-in hybrid vehicles (PHEVs) look and drive like regular hybrids. They have a large battery pack that captures braking and engine-generated energy. Like hybrids they have computer chips that decide when to run only the electric motor, using no gas, when to run the gasoline engine, and when to run both. Many plug-in hybrids are programmed to run on only electricity for ten to forty miles before engaging the engine. Heavy duty vehicles, and eventually some passenger cars, will use more efficient diesel engines, not gasoline.

Andy Frank was all smiles as a crowd of 600 applauded at the Plug-in 2008 Conference in San Jose, California, last week. Many in the crowd now drive plug-in hybrids as part of their fleet demonstration programs. A number in the crowd had converted their personal Toyota Priuses or Ford Escape Hybrids. This was a crowd of plug-in converts.

Some visionary fleet managers have accelerated the development of plug-in hybrids. Rather than wait years for major vehicle manufacturers to offer plug-ins, these fleets have contracted for conversions then used their own maintenance teams to keep the experimental vehicles running. For example, Google is getting 93 miles per gallon (mpg) with its converted plug-in Priuses, over double the 48 mpg of its normal Priuses. Google uses solar power to charge the cars. Google’s RechargeIT.org

In Southern California, 24 million people live in an area where the mountains trap smog and damage people’s lungs. South Coast Air Quality Management District plans to reduce emissions by contracting the conversion to plug-in of 10 Priuses, 20 Ford Escape Hybrids, and several Daimler Sprinter Vans. The vehicles are being put into a variety of fleets with hopes that “a thousand flowers will bloom.”

Fleets are piloting plug-in conversions around the country. These fleets include New York City, the National Renewable Energy Lab in Colorado, King and Chelan County Counties in Washington, Minneapolis and the City of Santa Monica.

Electric utilities have started a variety of plug-in hybrid pilot projects involving everything from cars to large trouble trucks. These utilities include Southern California Edison, Austin Energy, Duke Energy, Wisconsin Power, and Pacific Gas and Electric to name a few. At a time when there are desperate discussions about being more dependent on oil, including taking ten years to get oil from environmentally sensitive areas, electric utilities are coming to the rescue by increasingly powering our vehicles.

Because some plug-ins will go up to 40 miles in electric mode at slower speeds, it is possible to get over 100 miles per gallon. With short trips in cold weather, little improvement might be seen. Driving on freeways without recharging will not help. However, for most driving cycles, plug-ins can dramatically reduce the need for expensive gasoline fill-ups.

You can get over 100 miles per gallon (mpg) by either adding a kit to an existing hybrid, or by waiting until late 2010 to order a new car from the car makers that will be discussed in next week’s article. Due to probable wait lists, it may be three years before individuals can get delivery of plug-ins from car makers. If you are now getting only 20 mpg, getting 100 mpg would cut your gasoline bill 80%. Over the next few years, you will have a growing number of choices of plug-in hybrids.

Plug-In Supply unveiled its $4,995 Conversion Kit at the Plug-in 2008 Conference. The lead acid (PbA) conversion kit, based on the CalCars Open Source design, converts a Prius into a plug-in hybrid with an all-electric range of up to 15 miles if kept to a maximum of 52 mph. At freeway speed the gasoline engine will be engaged. Green Car Congress Article

Most fleets and people who convert prefer to deal with a system integrator, garage, or mechanic that is experienced with plug-in conversions and can maintain the vehicles. For example, Luscious Garage has converted about 20 vehicles. A garage might charge $2,000 or more to install a plug-in kit.

A123 Hymotion is establishing certified conversion centers throughout the nation so that people can convert their Toyota Priuses to plug-in hybrids for $9,995 per car. The conversion kit includes interfacing to the Prius computer that controls hybrid operation, interfacing with existing Prius NiMH battery, and includes a 5kWh A123 lithium battery.

Many early converts are enthusiastic about their plug-in hybrids. They report that electricity is only costing the equivalent of 75 cents per gallon, compared to over $4 per gallon of gasoline. If you plan to convert a hybrid to a plug-in, be sure that you have a safe and convenient place for recharging at home, work, or other location. For most, a 110 volt garage line will be the best option.

CalCars.org, a leading plug-in non-profit group, has been a major force in the growth of plug-in hybrids. Technical guru, Ron Gremban converted a Prius in 2004, and now contributes in many areas including the development of an Open Source plug-in platform. CalCars Founder Felix Kramer has patiently nurtured the expanding support of electric vehicle groups, environmental groups, media, legislatures, and auto makers. He has made “plug-in” a household name. There are a growing number of batteries, plug-in conversion kits, and garages for plug-in conversions. CalCars summarizes offerings and provides links.

In California, Sven Thesen converted his family’s Prius to a plug-in with help from CalCars.org. He and his wife love it, and share the plug-in Prius as their only vehicle. For them, it was not about saving money, rather it was to protect the future for their young daughters and everyone’s children. In Boston, students Zoë and Melissa converted because they see conventional cars as bad for the environment. In Texas, Jim Philippi replaced his 12 mpg Yukon with a converted plug-in that gets over 100 mpg. He buys renewable energy credits to use wind power for the plug-in charging. See Videos and Read about over 100 Plug-in Drivers

There is some truth to the old adage that you can recognize the pioneers by the arrows in their backs. Early conversions have sometimes produced problems and downtime. The conversions typically add an expensive second battery pack to the vehicle’s existing nickel metal hydride battery pack. To make the plug-in hybrid controls work, the manufacturer’s control system must be “fooled” with new input signals.

The added battery pack often displaces the Prius spare tire. In the Escape, a larger battery pack is often placed in the rear cargo area, behind the passengers seating in the rear seat. Battery life is a function of the state of charge. In hybrids, auto makers only use a narrow range of charging and discharging, so that they can warranty batteries for up to ten years. In plug-in hybrids, batteries are usually deeply discharged, reducing battery life. Kits may only warranty the expensive batteries for up to three years.

If anything goes wrong, auto makers like Toyota and Ford, may claim that the conversion created the problem and that their warranty is void. Although the car owner may have legal recourse, many are leery of warranty issues.

Even if vehicle lifecycle operating costs are higher with plug-in conversions and warranties limited, these issues have not stopped plug-in hybrid enthusiasts who strongly feel that we cannot wait for the big auto makers. They want rapid adoption of solutions to address global warming and oil addiction to end now. These early drivers of plug-in hybrids are leading the way — at 100 miles per gallon.

I returned from the conference to learn that my wife was spending $2,000 for new drapes. This was good news, for I assumed that it would therefore be no problem for me to spend $24,000 on a new Prius, less a nice trade-in for our 2002 model, and another $10,000 to convert it to a plug-in. An interesting discussion ensued.

We both want to save gas and take some leadership in making the future better, but $25,000+ (after trade-in) is a lot of money, especially in this economy. If the battery is dead in three years, that could be another $10,000, or less if kit providers offer extended warranties. Giving up the spare tire space is another concern. At least three times in my travels, I have needed to put on the emergency spare.

Like many, we are more likely to wait until the end of 2010, hoping for several electric vehicle and plug-in offerings for auto makers. These vehicles will be designed to be plug-ins, with smaller engines, only one lithium battery pack, better drive systems, and balanced vehicle weight. These new offerings will be discussed in my next article.

We can all be thankful for those who refuse to wait, often concerned with climate and energy security issues. There are over 200 converted plug-in hybrids now on the road. One year from now, there may be over 1,000 plug-in hybrids of all shapes and sizes in use.

By the end of 2010, we may be able to start buying plug-in hybrids from major auto makers. Once cars designed from the ground-up to be plug-ins are made in volume, prices differentials will drop to a fraction of the current charge of converted hybrids. In a few years, plug-ins, with long battery warranties may cost less than $5,000 more than their hybrid counterparts.

Plug-in hybrids will succeed because of Andy Frank and the early leaders who converted their vehicles to use more electricity and less petroleum. We will all benefit from the reduced gasoline use and cleaner air that started with the courageous pioneering of the plug-in converts.

John Addison publishes the Clean Fleet Report and speaks at conferences.

Copyright (c) 2008 John Addison. Portions of this article will appear in John Addison’s next book.

Fall Brings School, Pretty Leaves, And A New Prius

by Cristina Foung

My favorite green product of the week: 2009 Toyota Prius Hybrid Car

What is it?
For a lot of folks, “hybrid” is synonymous with “Prius.” Well, 2009 will see some changes to the car more people say they’d buy again.

This version is 3-4 inches longer and 1 inch wider than previous generations. It’s also heavier, faster, and more powerful (it’s moving from a 1.5 liter engine to a 1.8 liter). Not to mention, the top of the car will have a few solar panels on it to provide some power for the air conditioning unit.

Why is it better?
Fuel economy is expected to exceed 50 mpg (remember that the 2007 Prius was rated at 60 MPG but the EPA did recently change their fuel economy testing methods), which is not too shabby (although yes, being bigger and faster does detract from the efficiency gains the car would have had otherwise…but maybe it will appeal to a broader crowd). While the solar panels are primarily symbolic, it’s still nice to see Toyota supporting solar technology.

And while this generation isn’t a plug-in, hopefully the Prius line will have some new additions to the family (rumors are floating around that there may be a sub-compact version, a wagon, and a convertible spin-off on the way).

The only thing is…I’m not so keen on the styling changes they’ve made (thanks to Next Autos for the photo at the top – check out their gallery for more images of a Prius in tests).

Where can you find it?
Well, it’s not available quite yet. But keep tabs at your local Toyota dealership. The base model will be starting at $22,000 and the touring version at $24, 270.

Besides her green products column on Cleantech Blog, Cristina is a passionate advocate for green living at the Green Home Huddle at Huddler.com, which focuses on electric cars, energy efficient appliances, and other green products.

Press Release:
Toyota And Scion Announce Prices On Select 2009 Models July 25, 2008 – Torrance, CA – Toyota Motor Sales (TMS), U.S.A., Inc., announced new manufacturer’s suggested retail prices (MSRP) today for 13 select 2009 Toyota and Scion vehicles. The overall average MSRP for the 13 models increases by $181, or 0.81 percent. Toyota The 2009 Avalon full-size sedan adds to its value with additional standard equipment that includes driver and front passenger active headrests, Brake Assist, traction control, Vehicle Stability Control (VSC), and a satellite radio ready color-keyed SDARS antenna and prewire. The base MSRP for Avalon will range from $27,845 for the XL grade to $35,185 for the premium Limited grade. Overall, Avalon prices will increase $520, or 1.7 percent. The 2009 FJ Cruiser Sport Utility Vehicle (SUV) adds driver and front passenger active headrests, roll-sensing curtain airbags, a VSC cut-off switch, front map light, and a driver-side vanity mirror as standard equipment. The FJ also adds three new colors – – non-metallic Black, Silver, and Iceberg White with all-white monochromatic finish. The base MSRP for the FJ Cruiser will range from $23,320 for the 4×2 V6 with a five-speed automatic transmission to $24,910 for the 4×4 V6 automatic. Overall, the price of the 2009 FJ Cruiser increases by $275, or 1.1 percent. For 2009, the Land Cruiser full-size SUV adds factory privacy glass on the rear side and quarter windows as standard equipment. The base MSRP for the Land Cruiser will be $64,755, representing an increase of $655, or 1.0 percent. The base MSRP for the 2009 4Runner SUV will range from $28,640 for the 4×2 SR5 V6 to $39,360 for the 4×4 Limited V8. On average the MSRP for the 2009 4Runner increases by $225, or 0.7 percent. The base MSRP for the 2009 Highlander mid-size SUV will range from $27,600 for the Base front-wheel-drive model with a V6 engine and five-speed automatic transmission to $34,520 for the Limited four-wheel-drive V6 with a five-speed automatic. The overall average MSRP for Highlander will increase by $47, or 0.2 percent. The base MSRP for the gas-electric Highlander Hybrid will range from $34,700 for the two-row, four-wheel-drive with intelligence base model to $41,020 for the three-row, four-wheel-drive with intelligence Limited. The overall average MSRP for the Highlander Hybrid increases by $518, or 1.4 percent. The base MSRP for the 2009 Sienna van will range from $24,540 for the seven-passenger front-wheel-drive CE grade to $37,865 for the all-wheel-drive XLE Limited. The average base MSRP for Sienna will increase $100, or 0.4 percent. The base MSRP gas-electric Prius Hybrid will range from $22,000 for the Standard grade to $24,270 for the Touring grade. The overall average price for Prius will increase $500, or 2.2 percent. The 2009 Corolla sedan will receive a price adjustment increase of $100, or 0.6 percent. The base MSRP will range from $15,350 for the Base grade with a five-speed manual transmission to $20,050 for the XRS grade with a five-speed automatic transmission. A price adjustment for the 2009 Matrix will increase its MSRP by $100, or 0.5 percent. The base MSRP will range from $16,290 for the 4×2 Standard grade with a five-speed manual transmission to $21,950 for the 4×2 XRS with a five-speed automatic. The 2009 Camry sedan will receive an MSRP adjustment reflecting an increase of $225, or 1.0 percent. The base MSRP will range from $19,145 for the Camry four-cylinder with a five-speed manual transmission to $28,695 for the XLE V6 with a six-speed automatic. The gas-electric Camry Hybrid will receive a price adjustment increase of $500, or 1.9 percent. The new MSRP will be $26,150.