Posts

The End of Nuclear Power? Or Just the Beginning?

This week’s news: US NRC freezes decisions on new reactor, license renewal applications

“The US Nuclear Regulatory Commission voted unanimously Tuesday not to issue final decisions on granting licenses to build new nuclear power reactors and 20-year license renewals to existing ones, pending resolution of the agency’s waste confidence rule overturned by a court in June.

The commissioners, however, also ordered that NRC review of these license applications continue and that the agency’s Atomic Safety and Licensing Board Panel not accept or deny new challenges that may be filed in these proceedings relating to waste storage issues.”

Nukes in the US not dead of course, but the revival still on hold?

 

The post Fukushima nuclear future in Japan?  Still shut down, the replacement generation fleet still a patchwork.  The future is . . .?

 

And Germany?  Trying to get out of nukes puts intense pressure on gas (from Russia), renewables, and the grid.  As well as adds costs. Prognosis unclear.

 

Has Fukushima changed China’s nuclear energy ambitions? Or just its technology choices?

 

And exactly what are the costs for nuclear?  I will say generally, that on a cents per kwh basis, the broad lowering of interest rates benefits nukes better than any other form of power but hydro, given the combination of high portion of the of costs from the capital, and the high capacity factor.

 

So is the end of nuclear power’s 50 year challenge to coal power insight?  Or are we on the verge of a resurgence?  Situation unclear at best.

Thoughts from Intersolar 2012

By Guest Blogger Charles Waitman

I spent a day at Intersolar North America in San Francisco, considered by some to be North America’s premier exhibition and conference for the solar industry.  My career, to date has been in the oil industry.  This was my second Intersolar conference.  These are my observations.

PV dominated the conference.

Mark Pinto of Applied Materials gave an excellent presentation.  He forecasts that innovation will support continued growth in the rate of PV installation.  Dr. Pinto forecasts a 20 to 20% growth rate in annual solar installations, with annual installations reaching 250 GW/yr  and installed capacity reaching perhaps 800 to 900 GW by 2020.  He described total installed cost approaching $4/w today.  As an interesting perspective the installed cost of 250 GW, at $4/w, is about one third of worldwide expenditures for oil.  Other interesting perspectives, at the level of 800 to 900 GW, PV solar would represent 15% of worldwide generating capacity, 5 or 6% of annual generation, and a little less than 1% of energy use.   The US Energy Information Administration’s 2011 forecast (International Energy Outlook 2011) differs sharply from Dr. Pinto’s.  EIA forecasts a 16% annual growth rate for solar capacity (16% first derivative vs 20 to 30% second derivative for those of you who love calculus) from 2008 to 2020 with a 2020 capacity of 86 GW.  Pinto sees panel costs dropping below $1/watt.  Balance of system costs are coming down as well, but the progress here is slow.

I talked briefly with a representative of the EV Group about their non-reflective coatings.  The marketing strategy has been increased efficiency.  From my perspective the most significant benefit of these coatings might be expedited permitting since glare is a common concern.

I listened to several presentations at the PV Energy World Stage.  California Assembly member Skinner and Arthur O’Donnell of the CPUC reported on the California a legislative mandate to introduce storage with as yet unspecified physical requirements in 2015 and 2020.  The remaining presentations caused my head to spin thinking about load and generation profiles, distributed vs central generation, smart grid requirement – or perhaps things will just balance out.  However, the point that registered clearly in my mind is that $4/w for the installation isn’t the cost of PV in a very large scale and mature setting.  Storage, transmission, resources for load balancing, etc. will be big cost centers when we reach the point that PV power from the roof top impacts more than the firing rate of a peaking turbine.

What I didn’t see was discussion of end of life issues for panels and batteries.  While these issues are later (as in sooner or later), nickel, cadmium, lithium, magnesium, cobalt, tellurium, indium, selenium shouldn’t accumulate in stockpiles and permiate into the ground and water.  Everything has an end of life.  Disposal (or hopefully recycle) isn’t exciting, it is often expensive, it is hard to enforce.  PV isn’t the first promise of an almost infinite supply of clean energy.   Real thinking and robust policy regarding end of life issues should accompany the technological development that is proceeding at such a furious pace.

I am almost in the PV camp (a big deal for an oil industry guy).  PV is bigger than I thought, growth is faster than I thought (EIA is also a few years behind), and it will be a major part (as in Coal or Oil or Gas not domestic hot water) of the energy balance.  Balancing cost (including changes to the grid, and storage) and environmental impact (end of life) of PV against shale gas (abundant and likely cheap but faces groundwater issues) and combined cycle generation (pretty cheap and pretty clean but still a large source of greenhouse gas) will be no small challenge.

 

Chuck Waitman has extensive experience, within the oil industry, with synthetic fuels, refining, hydrogen production, cogeneration, energy procurement, energy contracts, and energy conservation.  For the last 5 years he has worked on implementation of California AB-32, the California Global Warming Solutions Act.  He presently consults on issues related to energy and greenhouse gas management.

 

National Research Council Give U.S. Climate Action Plan Roadmap

National Research Council (5/19/10)

The National Research Council issued new three reports emphasizing why the U.S. should act now to reduce greenhouse gas emissions and develop a national strategy to adapt to the inevitable impacts of climate change. The reports by the Research Council, the operating arm of the National Academy of Sciences and National Academy of Engineering, are part of a congressionally requested suite of five studies known as America’s Climate Choices.

“These reports show that the state of climate change science is strong,” said Ralph J. Cicerone, president of the National Academy of Sciences. “But the nation also needs the scientific community to expand upon its understanding of why climate change is happening, and focus also on when and where the most severe impacts will occur and what we can do to respond.”
The report suggests a range of emissions from 170 to 200 gigatons of carbon dioxide (CO2) equivalent for the period 2012 through 2050 as a reasonable goal, a goal that is roughly in line with the range of emission reduction targets proposed recently by the Obama administration and members of Congress. Even at the higher end of this range, meeting the target will require a major departure from “business-as-usual” emission trends. The report notes that with the exception of the recent economic downtown, domestic emissions have been rising for most of the past three decades. The U.S. emitted approximately 7 gigatons of CO2 equivalent in 2008 (the most current year for which such data were available). If emissions continue at that rate, the proposed budget range would be used up well before 2050, the report says.

A carbon-pricing system is the most cost-effective way to reduce emissions. Either cap-and-trade, a system of taxing emissions, or a combination of the two could provide the needed incentives. While the report does not specifically recommend a cap-and-trade system, it notes that cap-and-trade is generally more compatible with the concept of an emissions budget.
Carbon pricing alone, however, is not enough to sufficiently reduce domestic emissions, the

report warns. Strategically chosen, complementary policies are necessary to assure rapid progress in key areas such as: increasing energy efficiency; accelerating the development of renewable energy sources; advancing full-scale development of new-generation nuclear power and carbon capture and storage systems; and retrofitting, retiring, or replacing existing emissions-intensive energy infrastructure. Research and development of new technologies that could help reduce emissions more cost effectively than current options also should be strongly supported.

NRC Reports and Free Summaries

Clean Fleet Climate Action Reports

The compelling case that climate change is occurring and is caused in large part by human activities is based on a strong, credible body of evidence, says Advancing the Science of Climate Change, one of the new reports. While noting that there is always more to learn and that the scientific process is never “closed,” the report emphasizes that multiple lines of evidence support scientific understanding of climate change. The core phenomenon, scientific questions, and hypotheses have been examined thoroughly and have stood firm in the face of serious debate and careful evaluation of alternative explanations.

“Climate change is occurring, is caused largely by human activities, and poses significant risks for — and in many cases is already affecting — a broad range of human and natural systems,” the report concludes. It calls for a new era of climate change science where an emphasis is placed on “fundamental, use-inspired” research, which not only improves understanding of the causes and consequences of climate change but also is useful to decision makers at the local, regional, national, and international levels acting to limit and adapt to climate change.

The report recommends that a single federal entity or program be given the authority and resources to coordinate a national, multidisciplinary research effort aimed at improving both understanding and responses to climate change. The U.S. Global Change Research Program, established in 1990, could fulfill this role, but it would need to form partnerships with action-oriented programs and address weaknesses that in the past have led to research gaps, particularly in the critical area of research that supports decisions about responding to climate change.

Substantially reducing greenhouse gas emissions will require prompt and sustained efforts to promote major technological and behavioral changes, says Limiting the Magnitude of Future Climate Change, another of the new reports. Although limiting emissions must be a global effort to be effective, strong U.S. actions to reduce emissions will help encourage other countries to do the same. In addition, the U.S. could establish itself as a leader in developing and deploying the technologies necessary to limit and adapt to climate change.

An inclusive national policy framework is needed to ensure that all levels of government, the private sector, and millions of households and individuals are contributing to shared national goals. Toward that end, the U.S. should establish a greenhouse gas emissions “budget” that sets a limit on total domestic emissions over a set period of time and provides a clear, directly measurable goal. However, the report warns, the longer the nation waits to begin reducing emissions, the harder and more expensive it will likely be to reach any given emissions target.
We must manage and minimize the risks of climate change, says the third report, Adapting to the Impacts of Climate Change. Some impacts – such as rising sea levels, disappearing sea ice, and the frequency and intensity of some extreme weather events like heavy precipitation and heat waves – are already being observed across the country. The report notes that policymakers need to anticipate a range of possible climate conditions and that uncertainty about the exact timing and magnitude of impacts is not a reason to wait to act. In fact, it says boosting U.S. adaptive capacity now can be viewed as “an insurance policy against an uncertain future,” while inaction could increase risks, especially if the rate of climate change is particularly large.