Posts

Why is it So Hard to Make Money in New Battery Technology?

Energy storage is still the rage in cleantech.  But after the collapse of A123 and Beacon, and the spectacular failure on the Fisker Karma in its Consumer Reports tests, fire  in Hawaii with Xtreme Power’s lead acid grid storage system and with NGK’s sodium sulphur system, and now battery problems grounding the Boeing Dreamliners, investors in batteries are again divided into the jaded camp, and the koolaid drinker camp.   Not a perjorative, just reality.  New batteries and energy storage is still one of the juiciest promised lands in energy.  And still undeniably hard.  Basically, investors are relearning lessons we learned a decade ago.

Batteries are just hard.  Investing in them is hard.  Commercialization of batteries is hard. So why is it so difficult to make money in new battery technology?

Above and beyond the numbers, there are a number of commonalities related to the commercialization and venture financing life cycle of battery technologies that seem to differ to some degree from other venture investments in IT or even other energy technologies.  Having looked at probably 100+ deals over the years, and on the back of an deep study we did a couple of years ago on benchmarking valuations in energy storage, here’s our take on the why.

Timing – Battery technology commercializations have historically tended to be one of the slower commercialization cycles from lab stage to market.  Startups and investors in batteries have a long history of underestimating both the development cycle, capital required, and the commercialization cycle, as well as underestimating the competitiveness of the market.

Special chemistry risk – There is significant risk in launching a technology in newer battery chemistry.  There have been only a limited number of new chemistries succeed, and when they do, as in the case of NiMH and Energy Conversion Devices, they are typically either co-opted by larger competitors obviating a first mover advantage (that advantage is typically much weaker in this field than others) or requiring expensive patent suits.  Also as in the case of NiMH, there is no guarantee the chemistry will have legs (just when it is hitting its stride, NiMH is already becoming eclipsed by Li-On.  This risk has proven to be especially high for new chemistries (like Zn type) that are not as widely researched, as the supply chain development does not keep pace.  In addition, the battery field is highly crowded, and research is old enough that and despite new chemistry in most cases truly defensible patent positions are extremely hard to come by, or provide only discrete advantages (ability to supply a range of quality product cheaply in high volumes (or with value add to the product) seems to be the primary competitive advantage).  Few battery technologies of any chemistry end up their commercialization cycle with anywhere near as sustained an advantage as their inventors expected.

High capital costs – In any case, almost all battery startups will require extremely large amounts of capital (on the order of US$50 to 100 mm+) to achieve commercialization (much higher for real manufacturing scale), and the end product margins tend not to be particularly high.  Even with stage gate, a very large portion of this investment (US$10-50 mm+), is generally required to be spent while the risk of technical and economic failure is still high.  In addition, during the manufacturing scale up phase post R&D, capital investment required per $1 of revenue growth tends to be linear, making these technologies capital intensive to grow.

Degradation of initial technical advantage – In many technology areas one can expect the performance of the final manufactured product to improve over the performance in initial lab results, In part because of the low cost target, high reliability, high volume requirements of this product type however, promising battery technologies, are often forced to make compromises in the scale up, manufacturing, and commercialization stages that mean the performance of actual product might be expected to fall from levels or rates seen in lab scale experiments (though cost may go the other way).    At the same time, battery performance of standard technologies, while mature, is a moving target, and during the time frame for commercialization, will often improve enough to obviate the need for the remaining technical advantages.

Size matters – Most battery products (whether batteries or components like anode or cathode materials or electrolyte), are sold to large customers with very large volume requirements, and highly competitive quality and performance requirements.  As a result, breaking into new markets generally is extremely hard to do in niche markets, and means a battery startup must prove itself and its technology farther and for a longer period of time than other technology areas (see capital costs, timing and down rounds).  Many battery components technology developers as a result will be relegated for early adopters to emerging customers with high risks in their own commercialization path.

Lack of superior economics from licensing – As a result of these size, capital cost, timing, and commercialization risk issues most battery technologies will command much lower and more short-lived economics than anticipated from licensing (or require expensive patent lawsuits to achieve), and will require almost as late a stage of development (ie manufacturing operating at scale with proof of volume customers) and commensurate capital requirements, as taking the product to market directly.

Propensity for down rounds – In addition, battery technology companies tend to have down rounds in much larger numbers in the post A rounds (Series B through D+) than other venture investment areas, as these challenges catch-up to investors and management teams who overestimated the scope of work, capital and timing required in the seed, A and B rounds.  In particular, battery investors have tended to invest in seed, A and B stage battery technologies (pre-scaled up manufacturing process or even lab and prototype scale) with expectations of typical venture style timing and economics.  Quite often instead, it is the B, C, or D investor group that post cram-down rounds achieve the Series A economics (even when the technology IS successful), and the seed, A and B investors suffer losses or subpar IRRs.

The Economics of Cleantech Investing

I drafted this memo in early 2003 for a venture capitalist friend of mine, well before the bubble in cleantech.  In light of the back and forth on the recent Solar City IPO, I thought it was worth revisiting.  Some of the points were pretty prescient, calling out many of the challenges cleantech investors and exits have faced,  nearly a decade before they faced them.

 

Risk Economics in Energy Technology Investing


We believe there is substantial economics to be made from venture capital investment in energy technology, especially focused on clean energy and high efficiency or environmentally friendly applications.

However, investors unfamiliar with the sector tend to under-price risk and overestimate stage in technology development and commercialization in energy technology.

Much of this miscalculation can be boiled down to the fact that adoption rates of new technology in the energy sector generally tend to be slower than more traditional venture capital industry sectors.  This tends to be true for a couple of reasons, and has a number of implications for venture capital investment in the sector.  We have tried to lay out a few thoughts for potential investors in the space, which though they by no means constitute an all-encompassing investment model, should be helpful in decision-making.

Integration / Customer Hurdle Issues – This is a sector that tends to be very risk averse in new product and technology acceptance, and does not tend to pay for technology before the product stage, with an attitude of “we as the customer are already taking a huge risk by simply changing our operating procedures or letting you have access to our mission critical, extremely expensive infrastructure, why would we pay you, too?”  This situation is often characterized by very entrenched channels and customers, with multiple levels capable of “saying no”, and a long process to “yes”.  As result the level of product testing is substantially longer than other sectors as well. One implication (also see “Cheap” Technology below) is that technology businesses that have access to customers or are in integration areas tend to be under-priced by investors relative to technology developers.  This under-pricing can be especially true if the business has a vision to acquire technology or IPRs from developers as a price of admission to a customer base.  This set of issues also raises a second set of implications in the engine industry, where the major engine manufacturers, while they are often under pressure for change, are not exactly adept at handling new technology adoption, in part since they sell almost entirely through low-tech dealer networks, and only partially touch the end customer themselves.  Another risk issue here is that investors in technology development have tended to underestimate the power of entrenchment in both customers and channels, and as discussed below, run a risk of being caught in a bind as a one-product wonder without the depth or breadth of solution to protect market share.

R&D vs. Product /Market Development Investments – Because of the slowness of adoption rates, the relative risk of R&D investment bets to product /market development investment bets tends to be substantially higher than in many other sectors.  The implication is that early stage investment (pre- purchase orders) should be done at lower valuations than the same stage in other sectors, while later stage (post purchase order) investment can potentially be done at higher valuations, while achieving the same risk adjusted IRR.  Another implication is that investors often should expect some level of public funding support for technology development as a prerequisite for investment, not as a driver of additional valuation.

“Eternal Pilots” – This industry tends to be under significant environmental and PR pressures and as a result companies in the space tend to make limited investment of resources and capital in numerous pilot programs and “evaluations” that do not have significant likelihood of moving forward in a major way, but may run for years.  This has been especially true of regulated utilities that could often in effect price through some of the cost, or were expecting to bear the cost anyway as part of a PR or ongoing market vision program, as well as major energy companies, who have huge margins, and tend to have massive and far-flung R&D programs.  This tends to obscure the vision of VC investors looking to bet on strategic relationship “traction” as a way to proxy potential product adoption.  In other words, one can easily overestimate “traction”, and investors often tend to overestimate the life cycle stage of a new technology.  The newer the technology, the higher the over-estimation risk would tend to be.

Political Process – This industry tends to be very politically sensitive.  And the entrenched leaders tend to be much better than the startups at managing this process.  One thing this means is that significant public/government backed or public/private capital is available to fund R&D in the area, and that government/military business can often be viewed as core customer base.  It also means that technology development requiring regulatory or legislative drivers can be much riskier than in other sectors.

“Cheap” Technology – Given the above, existing technology tends to be “cheap” on the venture capital scale, and contracted or visible business tends to be the driver of value. Part of this is because the technology is often developed with “cheap” public dollars. The other way to think about it is that if you have the market and access to customers, attractive, proven technology at the product development stage can often be acquired for essentially pure upside.  While this may not call into question a particular technology development investment program, it again does have implications for the value of that technology as opposed to the value of a going concern.

Make One Bet, Not Two – To follow on that point, one implication is that an effective investment strategy may be to accept either technology development risk, or market risk, but not both.  In that, an investment in technology development not be made unless there was a near certainty of obtaining public funding to offset substantial portions of the cost or customer purchase orders once product development is completed, or that investment in customer ramp or market development not be made unless the technology is proven and has extremely limited risk of failure.  Betting on early stage companies that neither have a “locked-in” customer or completed technology may tend to be an extremely risky bet, and should perhaps be done only at quite low valuations relative to other industries.

Gross Margin Ramp – Another area of typical miscalculation is in profitability of new technology.  The sector tends to be a bit more “custom” in its product demands than some industries, and one major bet that has caught investors is cost structure/timing of volume orders.  This is an area where it has proven extremely difficult for many companies to develop enough business to move gross margin positive, let alone operating profit.  A common mistake is to over build manufacturing capacity in an often desperate race to get a marginally cost effective technology to an acceptable cost point to achieve venture like growth projections, when a more effective strategy often might have been to build low volume, higher cost point premium solutions for a smaller market in order to maintain the business during the often long process of technology adoption.  Such a strategy, which tends to be ignored by venture backed startups until too late, can be a key element in reducing the timing risk in this sector.  Part of the issue also stems from technology companies misunderstanding the price point potential and impact on their net price to manufacturer from channel and integration costs, a particularly sore point now to many companies betting on distributed generation technology, as is the point below.

One Product Wonders – Unlike other sectors where large companies are quite adept at acquiring in new products and technology lines, this is a sector where major competitors tend to be more likely to make a build vs. buy decision.  This tends to be more true for high margin components of an overall solution, exactly where technology investors tend to play.  Often investors have found that their supposed channel is in fact their most successful competitor, even despite the fact that the channel may not very good at the solution.  The result is that investors often overestimate how far a single product company can go, and overestimate how badly a potential strategic partner or exit will view that they need a particular technology solution.

While none of these points are meant to invalidate particular investment strategies, they are meant to be points to consider when risk adjusting and developing pricing / valuation strategies for energy technology investments.  At the end of the day, we tend to feel that technology companies in this sector, when compared to many other venture capital investment sectors, should be priced much more closely on visible cashflows than value of technology or market potential, or by “stage”, where the risked economics may not be as easy for an investor to define.

Stunning Cleantech 2012

It’s been a busy, ummm interesting year.  We’ve tracked profits to founders and investors of $14 Billion in major global IPOs on US  exchanges and $9 Billion in major global M&A exits from venture backed cleantech companies in the last 7-10 years.  Money is being made.  A lot of money.  But wow, not where you’d imagine it.

5 Stunners:

  • Recurrent Energy, bought by Sharp Solar for $305 mm, now on the block by Sharp Solar for $321 mm.  Can we say, what we have here gentlemen, is a failure to integrate?  This was one of the best exits in the sector.
  • Solyndra Sues Chinese solar companies for anti-trust, blaming in part their subsidized loans????????  Did the lawyers miss the whole Solyndra DOE Loan Guarantee part?  It kind of made the papers.
  • A123, announced bought / bailed out by Chinese manufacturer a month ago, now going chapter bankruptcy and debtor in possession from virtually the only US lithium ion battery competitor Johnson Controls?
  • MiaSole, one of the original thin film companies, 9 figure valuation and a $55 mm raise not too long ago (measure in months), cumulative c $400 million in the deal, sold for $30 mm to Chinese Hanergy just a few months later.  (Not that this wasn’t called over and over again by industry analysts.)
  • Solar City files for IPO, finally!

 

My call for the 5 highest risk mega stunners yet to come:

  • Better Place – Ummmmmmmmmm.  Sorry it makes me cringe to even discuss.  Just think through a breakeven analysis on this one.
  • Solar City – a terrifically neat company, and one that has never had a challenge driving revenues, margin, on the other hand . . .
  • BrightSource – see our earlier blog
  • Kior – again, see our prior comments.  Refining is hard.
  •  Tesla – Currently carrying the day in cleantech exit returns, I’m just really really really struggling to see the combination or sales growth, ontime deliveries, and margins here needed to justify valuation.

I’m not denigrating the investors or teams who made these bets.  Our thesis has been in cleantech, the business is there, but risk is getting mispriced on a grand scale, and the ante up to play the game is huge.

 

Cleantech Venture Backed M&A Exits? Well, Yes, Sort of . . .

When people ask me, are investors making money in cleantech, I tell them yes, but not by whom or in what you thought they were.

Most of the analyses of cleantech exits do not differentiate for venture backed companies.  So we conducted our own study.

In the last 10 years, Cleantech.org’s Cleantech Venture Backed M&A Exit Study shows a grand total of 27 venture backed cleantech deals > $50 mm.

All in all, very tough returns.   A number of 8 to 10 figure fortunes made, just laregly not by the investors spending the 9 and 10 figure investments.

19 where we had data on both exit values and venture capital invested, 8 where we had revenue estimates.

We found a 2.78x Median Exit Value Multiple on Venture Capital Invested

– Those exit numbers include the founders and management’s shares, so average returns to investors would be somewhat lower.

We found a 2.2x Median Exit Value Multiple on Revenues.

$13 Billion in total M&A exit value.  Not bad, until you realize that’s over 10 years where cleantech has seen tens of billions in investment, and we used a pretty broad definition of “venture backed”.  To get there we included Toshiba’s Landys+Gyr, Total’s Sunpower, EDP’s Horizon and ABB’s Ventyx deals.  Those are the top 5 deals by value, and represent 60% of the $13 Billion.  None were backed by investors you would normally think of as cleantech venture capital powerhouses (Bayard Capital, Cypress Semiconductor, Zilkha and Goldman Sachs, Vista Energy).  Three of them included prior acquisitions themselves.

Excluding those and looking at only the transactions where we had both valuation and exit data we found and even weaker $3.8 Billion on $1.8 Billion in venture capital, 2.1x.

Most surprising, if you looked at the list of investors in these Nifty 27 exits, you’d have heard of very few of them.  This is truly not your father’s venture capital sector.

The exits have a surprisingly low tech flavor, and were carried by renewable energy project developers, ESCOs, and smart grid, and solar balance of system manufacturers.

If we had limited this to Silicon Valley venture investors in high tech deals, well, you’d have wondered if M&A were a four letter word.

Interesting, isn’t it?  Contact me at dikeman@janecapital.com with any questions or if you’ve got deal data you’d like to see included.

Climate Change a Game Changing Factor for Corporate Valuations

by Marguerite Manteau-Rao

Smart industry leaders better listen to McKinsey’s just released study on the likely impact of climate change mitigation scenarios on corporate valuations.

Depending on the type of industry, and the preparation level of businesses, including strategic planning and adaptation, the outcome for a particular business could run the gamete, from opportunistic gains, to spectacular losses.

For companies, climate change is no longer just a CSR issue, but a matter of long term financial survival.

Marguerite Manteau-Rao is a green blogger and marketing consultant on sustainability and social media. Her green blog, La Marguerite, focuses on behavioral solutions to climate change and other global sustainability issues. Marguerite is a regular contributor to The Huffington Post.