Top 10 Cleantech Subsidies and Policies (and the Biggest Losers) – Ranked By Impact

We all know energy is global, and as much policy driven as technology driven.

We have a quote, in energy, there are no disruptive technologies, just disruptive policies and economic shocks that make some technologies look disruptive after the fact.  In reality, there is disruptive technology in energy, it just takes a long long time.  And a lot of policy help.

We’ve ranked what we consider the seminal programs, policies and subsidies globally in cleantech that did the helping.  The industry makers.  We gave points for anchoring industries and market leading companies, points for catalyzing impact, points for “return on investment”, points for current market share, and causing fundamental shifts in scale, points for anchoring key technology development, points for industries that succeeded, points for industries with the brightest futures.  It ends heavy on solar, heavy on wind, heavy on ethanol.  No surprise, as that’s where the money’s come in.

1.  German PV Feed-in Tariff – More than anything else, allowed the scaling of the solar industry, built a home market and a home manufacturing base, and basically created the technology leader, First Solar.

2. Japanese Solar Rebate Program – The first big thing in solar, created the solar industry in the mid 90s, and anchored both the Japanese market, as well as the first generation of solar manufacturers.

3. California RPS – The anchor and pioneer renewable portfolio standard in the US, major driver of the first large scale, utility grade  wind and solar markets.

4. US Investment Tax Credit for Solar – Combined with the state renewable portfolio standards, created true grid scale solar.

5. Brazilian ethanol program – Do we really need to say why? Decades of concerted long term support created an industry, kept tens of billions in dollars domestic.  One half of the global biofuels industry.  And the cost leader.

6. US Corn ethanol combination of MTBE shift, blender’s, and import tariffs – Anchored the second largest global biofuels market, catalyzed the multi-billion explosion in venture capital into biofuels, and tens of billions into ethanol plants.  Obliterated the need for farm subsidies.  A cheap subsidy on a per unit basis compared to its impact holding down retail prices at the pump, and diverted billions of dollars from OPEC into the American heartland.

7. 11th 5 Year Plan  – Leads to Chinese leadership in global wind power production and solar manufacturing.  All we can say is, wow!  If we viewed these policies as having created more global technology leaders, or if success in solar was not so dominated by exports to markets created by other policies, and if wind was more pioneering and less fast follower, this rank could be an easy #1, so watch this space.

8. US Production Tax Credit – Anchored the US wind sector, the first major wind power market, and still #2.

9. California Solar Rebate Program & New Jersey SREC program – Taken together with the RPS’, two bulwarks of the only real solar markets created in the US yet.

10. EU Emission Trading Scheme and Kyoto Protocol Clean Development Mechanisms – Anchored finance for the Chinese wind sector, and $10s of Billions in investment in clean energy.  If the succeeding COPs had extended it, this would be an easy #1 or 2, as it is, barely makes the cut.


Honorable mention

Combination of US gas deregulations 20 years ago and US mineral rights ownership policy – as the only country where the citizens own the mineral rights under their land, there’s a reason fracking/directional drilling technology driving shale gas started here.  And a reason after 100 years the oil & gas industry still comes to the US for technology.  Shale gas in the US pays more in taxes than the US solar industry has in revenues.  But as old policies and with more indirect than direct causal effects, these fall to honorable mention.

Texas Power Deregulation – A huge anchor to wind power growth in the US.  There’s a reason Texas has so much wind power.  But without having catalyzed change in power across the nation, only makes honorable mention.

US DOE Solar Programs – A myriad of programs over decades, some that worked, some that didn’t.  Taken in aggregate, solar PV exists because of US government R&D support.

US CAFE standards – Still the major driver of automotive energy use globally, but most the shifts occurred before the “clean tech area”.

US Clean Air Act – Still the major driver of the environmental sector in industry, but most the shifts occurred before the “clean tech area”.

California product energy efficiency standards – Catalyzed massive shifts in product globally, but most the shifts occurred before the “clean tech area”.

Global lighting standards /regulations – Hard for us to highlight one, but as a group, just barely missed the cut, in part because lighting is a smaller portion of the energy bill than transport fuel or generation.


Biggest Flops

US Hydrogen Highway and myriad associated fuel cell R&D programs.  c. $1 Bil/year  in government R&D subsidies for lots of years,  and 10 years later maybe $500 mm / year worth of global product sales, and no profitable companies.

Italian, Greek, and Spanish Feed in Tariffs – Expensive me too copycats, made a lot of German, US, Japanese and Chinese and bankers rich, did not make a lasting impact on anything.

California AB-32 Cap and Trade – Late, slow, small underwhelming, instead of a lighthouse, an outlier.

REGGI – See AB 32

US DOE Loan Guarantee Program – Billion dollar boondoggle.  If it was about focusing investment to creating market leading companies, it didn’t.  If it was about creating jobs, the price per job is, well, it’s horrendous.

US Nuclear Energy Policy/Program – Decades, massive chunks of the DOE budget and no real technology advances so far in my lifetime?  Come on people.  Underperforming since the Berlin Wall fell at the least!


Wind, Water and Sun can Power Our 240 Million Cars and Everything Else

Mark Jacobson Lecture Our Promising Future of Electric Cars Powered by Renewable Energy

Our Promising Future of Renewable Energy

The cleanest solutions to global warming, air pollution and energy security are wind, water, and solar power (WWS).  As Dr. Mark Jacobson walks me through the numbers of his, Dr. Mark Delucchi, and their teams’ multi-year study, the renewable energy solution stands out as the clear winner. Dr. Jacobson is a Professor of Civil and Environmental Engineering at Stanford University and an advisor to the U.S. Department of Energy.

Wind power has been doubling in capacity about every three years. It’s now over 200 GW; in 3 years it will be over 400 GW. 36 U.S. states generate enough wind power to replace one or more coal or nuclear power plants.  U.S. wind grew 39 percent in recession year 2009. In a growing number of global locations from Hawaii to Denmark, wind is the least expensive way to generate power. Their WWS study includes both on-shore wind power, which is plentiful from Texas through the Dakotas and offshore with enormous potential along our Pacific and Atlantic coasts and our Great Lakes.

Solar includes the photovoltaics that cover homes and the faster growing PV that covers commercial roofs. It also includes the grid-scale PV and concentrating solar power (CSP) that generates the equivalent power of a natural gas or coal plant. The water in WWS includes hydropower, our most widely used source of renewable energy, and geothermal power, which uses steam to drive turbines.  Water also includes emerging, wave and tidal power generation.

WWS can meet all of our needs for electricity. WWS can also meet all of our need for heat and for transportation.

At the same time that we see high growth of WWS, especially wind and solar power, we are also experiencing transformational growth of electrified transportation. Mark Jacobson points out that electric propulsion is four times as efficient as internal combustion. Health concerns, energy security, and economics make combustion a loser. Every year we see more battery electric vehicles (BEV), electric rail, and even hydrogen fuel-cell vehicles (HFCV) such as the 20 buses that transported 100,000 visitors during the last Winter Olympics.

From a technology standpoint WWS can meet all of our needs in 20 to 40 years.  How far and how fast we move to reduce greenhouse gas and health-damaging emissions depends more on politics, sunk-costs and inertia than on what is feasible.  Faced with the growing threats of global warming such as heat waves, water scarcity, failed food production, continued growth of WWS is essential.

Electric Cars End Our Dependency on Oil and WWS Ends Our Dependency on Coal

By 2015, several forecasts put one million to 1.5 million electric cars on the U.S. road. Having recently purchased a Nissan Leaf, I believe the forecast. My electricity bill is a fraction of what I paid at the gas station to put on the same miles. With current incentives, my electric car cost $22,000. Prices are likely to decline for electric cars while gasoline prices are forecasted to increase.

Mark Jacobson has driven his Tesla Roadster 16,000 miles. He charges his Tesla with the same solar photovoltaics that power his entire house. By going Mark Jacobson Driving Tesla Our Promising Future of Electric Cars Powered by Renewable Energyto energy efficient electric appliances and solar water heating, their utility bill is at the minimum needed for a couple of gas burners on the stove for a few favorite meals. Mark and his wife don’t just talk about the transition to WWS – they live it.

With the 240-mile range of his Tesla Roadster, range has rarely been an issue. Yes, on a trip to Sacramento, he had to plug his Level 1 charger into the outlet in his motel room, extending the cord out the window to his electric car. On one trip to Modesto, he had to convince his hotel manager to turn-off their decorative water fountain so that he could use the fountain’s electric outlet to trickle charge overnight. The vast majority of the time, he is riding on sunlight.

Public charging infrastructure is expanding, renewable energy growth continues, and lithium battery prices fall as gasoline and diesel increase in cost. Our cars are getting cleaner and more electric.

Jacobson and Delucchi looked at the lifecycle impacts of different types of cars and various fuels. Alternatives were ranked according to their impacts on global warming, pollution that impacts our health, water supply, land use, security issues such as terrorism and other impacts. The study evaluated nuclear, coal and natural gas with sequestration, advanced biofuels, and included hybrid and plug-in hybrids vehicles. Our best scoring alternatives, in the following order, are electric vehicles using renewable energy:

  1. Wind – BEVs
  2. Wind – HFCVs
  3. CSP – BEVs
  4. Geothermal – BEVs
  5. Tidal – BEVs
  6. PV – BEVs
  7. Wave – BEVs
  8. Hydro – BEVs

Pure battery-electric cars were the big winner in their study with most of their power coming from wind and solar charging. Hydrogen from wind electrolysis scores best for vehicles requiring extended range such as buses, ships using hybrid hydrogen fuel cell propulsion, and aircraft using liquefied hydrogen combustion. Mark Jacobson’s articles for Scientific American, Energy Policy, testimony to Congress and the EPA, and more can be accessed at his Stanford website.

The study used existing technology that can scale to broad commercial deployment. At first glance, growing to 11.5 TW of WWS globally looks impossible, a closer look shows that many of the study’s assumptions are conservative because only today’s technology is considered. The shift to electric vehicles powered with renewable energy will be easier if vehicles are built with much lighter materials, or if we succeed with breakthrough battery chemistry such as lithium air. The electric car/renewables scenario timetable also improves as U.S. drivers continue their trend of driving fewer miles thanks to record urban density, transit, flexwork, and aging boomers.

In Energy Policy Jacobson and Delucchi write, “”Although we focus mainly on energy supply, we acknowledge and indeed emphasize the importance of demand-side energy conservation measures to reduce the requirements and impacts of energy supply. Demand-side energy conservation measures include improving the energy-out/energy-in efficiency of end uses (e.g., with more efficient vehicles, more efficient lighting, better insulation in homes, and the use of heat exchange and filtration systems), directing demand to low-energy use modes (e.g., using public transit or telecommuting instead of driving)….”

Vehicle to Grid and other Storage

A 100% WWS United States must deal with the variability of wind and solar. This is an important reason that wind, water, and solar power are all needed to meet our 24/7 demands. Large-scale deployment of wind and solar will require a Supergrid network of high-voltage lines that can move electricity from mid-American wind farms and desert solar plants to cities and industry. With a national Supergrid, WWS is largely achievable without storage and even without using pricing and demand response (DR) to make energy demand more level. He walked me through a California study that he co-lead in 2005 showing that WWS would meet 99% of California needs, even during peak hours on a burning summer day. With our growing use of DR, intelligent energy management, and storage, large scale WWS can be deployed more quickly.

Byron Shaw of GM quipped, “Cars are like cats, they sleep 22 hours per day.” Most cars are parked when the grid faces peak demands. Why not let people make money charging at night at a discount and sell electricity back to the grid at peak at premium pricing? The model works well for individuals and businesses with solar power.

Jacobson and Delucchi write, “The use of EV batteries to store electrical energy, known as ‘‘vehicle-to-grid,’’ or V2G, is especially promising, albeit not necessarily easy to implement…. In order for V2G systems to provide operating reserves to compensate for hourly variations in wind power (again when wind power supplies 50% of US electricity demand), 38% of the US LDV fleet would have to be battery-powered and be on V2G contract.”

Yet 38 percent will not need to sign V2G contracts because V2G is just one of many ways to store wind and solar power until needed. Utilities currently use nighttime wind energy to pump water uphill. The next day at peak hours the water flows downhill driving generators. Grid-scale batteries, compressed air storage, and storage towers coupled with concentrating solar plants are all in early stage use.

Easier than It Looks

Meeting 100 percent of our energy and transportation needs with wind, water, and solar power seems as daunting as putting a man on the moon. Mark Jacobson and Mark Delucchi state in Energy Policy, “With sensible broad-based policies and social changes, it may be possible to convert 25% of the current energy system to WWS in 10–15 years and 85% in 20–30 years, and 100% by 2050. Absent that clear direction, the conversion will take longer. “

Their WWS scenario can meet our electricity, heat, and transportation needs. The technology is here, but it will take considerable political will to overcome the subsidies, market barriers, and change required to meet all needs with WWS.

In several ways, the transition will be easier in the United States. We already have more vehicles than people with drivers license, in contrast to the explosion of middle class drivers in Asia now buying their first car.

In the United States we have achieved strong growth of wind and solar. Now we are successfully deploying smart grids and electric cars. WWS does not require technology breakthroughs, yet dramatic innovation is likely in the next two decades in battery technology, solar efficiency, and urban mobility that requires fewer car miles.

Jacobson and Delucchi only assume reasonable progress in energy efficiency. New lighting technology, such as LED, can cut 80 percent of lighting’s 27 percent of total electricity demand. Making electricity cheap during vehicle charging hours and more expensive during peak hours will make a huge difference. In the United States, 80 percent WWS is achievable in the next two or three decades. 100 percent is like putting a man on the moon – it looked impossible until we did it.

Safer than Nuclear – Renewable Energy, Natural Gas, Energy Efficiency

“In 88 minutes, the sun provides 470 exajoules of energy, as much energy as humanity consumes in a year.” In Scientific American, Ramez Naam adds, “In 112 hours – less than five days – it provides 36 zettajoules of energy – as much energy as is contained in all proven reserves of oil, coal, and natural gas on this planet.”

We have no shortage of energy. Fortunately, we are increasingly producing and delivering more renewable energy at lower cost. At the same time we are more efficient about using energy for everything from lighting, to buildings, to transportation. Most promising is the trend to make energy cheap when plentiful, more expensive at peak, and use intelligent energy management to level the use. The grid is starting to get smart.

With a smart grid and national network of high-voltage lines, solar and wind power that are intermittent in single locations become predictable sources of steady power with a smart super grid. Renewables such as hydro, bioenergy, geothermal are already used as base load. The most cost-effective way to meet most of our base load needs is with efficient combined-cycle natural gas power plants.

As nations around the world rethink their plans for nuclear energy, better alternatives are seen in energy efficiency, renewable energy, natural gas, smart grid, and intelligent energy management.

Workers in Japan are heroically risking their lives to prevent a Chernobyl-type disaster. Earthquake exposed cores are tenuously contained hour by hour. Onsite spent fuel rods are being prevented from melt down minute by minute. Most problematic are nuclear plants that are over 30 years old. In Germany, Chancellor Merkel has called for a temporary shutdown of all nuclear plants built before 1980.

Such dangers should give us pause in the United States where over 100 plants were built pre-1977 with 40-year target lives. 59 of those plants have had their licenses extended to 60 years. The nuclear industry has campaigned to stretch these to 80-year licenses.  In almost all cases, like Japan, the spent rods are stored onsite in U.S. plants. Some U.S. reactors are located near major earthquake faults.

Fortunately, we have safer and more cost-effective energy solutions. The new Clean Energy Trends 2011 highlights strong growth in energy efficiency (including solar hot water), renewable energy, and innovative integration of natural gas and CSP. The report documents rapid progress: “The global market for solar photovoltaics (PV) has expanded from just $2.5 billion in 2000 to $71.2 billion in 2010, for example, representing a compound annual growth rate (CAGR) of 39.8 percent. The global market for wind power, which like solar PV we have tracked every year for the past decade, has similarly expanded from a global market worth $4.5 billion in 2000 to more than $60.5 billion today, for a CAGR of 29.7 percent.” Clean Edge research projects wind power to expand from $60.5 billion in 2010 to $122.9 billion by 2020, and solar to expand from $71.2 billion to $113.6 billion by 2020. Clean Trends 2011 also looks at innovative combination of cost-effect base load power and renewables:

The integration of natural gas and renewable energy offers an opportunity to transition smoothly away from dirty energy sources. One key trend in pairing natural gas with renewables has been the development of solar-gas hybrid systems, such as Florida Power & Light’s Martin Next Generation Solar Energy Center, which recently connected a 75 MW, concentrated solar power (CSP) plant to the largest natural gas plant in the U.S. (3.8 GW). Other hybrid plants in development include an NV Energy project in Nevada and two separate projects in California led by Inland Energy. Along with tackling renewables’ intermittency issues, hybrid plants are an enticing idea because the sharing of existing infrastructure, such as turbines and transmission lines, promises to reduce upfront capital costs. Integrated solar combined cycle (ISCC) plants, which increase steam generation by adding solar heat to gas-turbine waste heat, are another example of the mixing of solar and gas.

The best solution of all is to encourage people to save money by being more energy efficient. By making energy cheap off-peak and more pricey during peak hours, consumers know when to run their energy-efficient appliances, and industry knows how to optimize electricity demand.

Twenty-seven percent of all global electricity is consumed by lighting. I write this article sitting underneath new LED light bulbs that use one-tenth the energy of the old fashioned incandescent bulbs that came with the home when we bought it three years ago. As I finish the article, no lighting is needed. Sunlight streams in to welcome a bright day and a brighter future.

Electric Car Charging and Building Integrated Wind Power

By John Addison (9/14/10)

Greenway Self-Park is Chicago’s new 11-story parking structure is the world’s first to combine integrated wind power, electric car charging, and two car sharing services with plans to offer electric cars. The green parking structure was designed by HOK, a leading global architectural firm. Beautifully integrated into the structure is a 12-paired array of vertical turbines, located on the southwest corner of the garage, designed to harvest energy 24/7 in this famous “Windy City.”

Greenway car sharing partners include iGo and Zipcar which offers members the ability to pay for plug-in cars by the hour in select markets. Car sharing is a perfect fit for millions who live in the city, primarily use transit, but at times need a car for a few hours. Both iGo and Zipcar plan to expand their offerings of electric cars and plug-in hybrids.

Friedman Properties’ new energy-efficient parking structure is currently pursuing LEED® (Leadership in Energy and Environmental Design) Certification from the U.S. Green Building Council. Sustainable design initiatives for Greenway Self-Park include a cistern rain water collection system, electric car plug-in stations, and a way-finding system at each elevator lobby that educates Chicagoans on how to live more sustainably and better protect the environment. The 11-story structure is a beautiful and compact contrast to the vast sprawl of uncovered parking lots.

In May, I was in Chicago to give a speech about sustainable transportation at the headquarters of the American Planning Association. View my APA webinar “More Smiles, Less Miles.” I was very impressed with Chicago’s leadership in green LEED buildings, green roofs, and transit oriented development. Chicago is ranked #4 in Sustainlane’s green ranking of U.S. cities.

Chicago again demonstrates its leadership with building-integrated wind power, electric car charging, innovative car sharing, and sustainable design.

By John Addison, Publisher of the Clean Fleet Report and conference speaker.

U.S. Wind Energy Breaks Record with 10 GW added in 2009

By John Addison

The U.S. wind industry broke all previous records by installing 9,922 MW installed last year. This expanded the nation’s wind fleet by 39% and bring total wind power generating capacity in the U.S to over 35,000 MW. The five-year average annual growth rate for the industry is also 39%. U.S. wind projects today generate enough to power the equivalent of 9.7 million homes, protecting consumers from fuel price volatility and strengthening our energy security.

Wind power and natural gas are the leading sources of new electricity generation for the United States, generating 80% of new capacity, as most utilities avoid the risks of adding coal and nuclear power plants.

The 39% expansion of wind power is remarkable because many projects required hundreds of millions in long-term financing during the sever recession and time when many banks stopped lending. Also, many lenders who previously wanted production tax credits (PTC), lost money in 2009 and had no need for PTC.

There is mixed optimism about wind power’s continued growth will continue in 2010. Three GW of new wind are under construction with more projects that will be added during the year. TVA added 815 MW is a good example.

Improved price-performance of equipment is one driver. 1603 Treasury Grants (Excel spreadsheet of 240 Funded Projects), Investment Tax Credit, and other tax credit with completion deadlines will also fuel growth in 2010. RPS in 30 states is another driver.
Without new energy or climate legislation we may not see added growth of wind and other renewables. Uncertainty is a deal killer. Lack of new high-speed electricity transmission is the biggest obstacle to growth of renewables. NIMBY activism and lack of appropriate cost sharing are challenges for high-speed transmission.

Natural gas growth may surge ahead if wind growth stalls in 2010. Utilities also prefer natural gas power plants for baseload power. In the decade ahead, large-scale grid storage may make the variability of wind power less of an issue. Report about 32 new grid storage and smart grid projects.

“The U.S. wind energy industry shattered all installation records in 2009, chalking up the Recovery Act as a historic success in creating jobs, avoiding carbon, and protecting consumers,” said AWEA CEO Denise Bode. “But U.S. wind turbine manufacturing – the canary in the mine — is down compared to last year’s levels, and needs long-term policy certainty and market pull in order to grow. We need to set hard targets, in the form of a national Renewable Electricity Standard (RES), in order to provide the necessary stability for manufacturers to expand their U.S. operations and to seize the historic opportunity we have today to build up a thriving renewable energy industry.”

Early last year, before the Recovery Act (ARRA), the industry anticipated that in 2009 wind power development might drop by as much as 50% from 2008 levels, with equivalent job losses. The clear commitment by the President to create clean energy jobs and the swift implementation of ARRA incentives by the Administration in mid-summer reversed the situation.

Recovery Act incentives spurred the growth of construction, operations and maintenance, and management jobs, helping the industry to save and create jobs in those sectors and shine as a bright spot in the economy. Some 50 U.S. facilities are planning expansion, including turbine manufacturers headquartered outside the U.S., although some will need financing and greater market certainty to expand. The United States competes with Europe and Asia for wind industry job growth. In 2009, most U.S. wind projects were divided among a dozen turbine manufacturers such as General Electric, Vestas, Suzlon, Siemens, and Mitsubishi.

America’s wind power fleet will avoid an estimated 62 million tons of carbon dioxide annually, equivalent to taking 10.5 million cars off the road, and will conserve approximately 20 billion gallons of water annually, which would otherwise be withdrawn for steam or cooling in conventional power plants.

Texas extended its lead benefiting from strong winds and fewer regulatory hurdles than many states in the nation. Fourteen U.S. states now have over 1 GW of installed wind. The top five states by wind power installed (in MW):

Texas 9,410
Iowa 3,670
California 2,794
Washington 1,980
Minnesota 1,809
AWAE Market Report

Can wind power continue to grow? Yes. The November 2009 feature article in Scientific American reported how wind, water and solar technologies can provide 100 percent of the world’s energy, eliminating all fossil fuels by 2030. Recommended reading is “A Plan to Power 100 Percent of the Planet with Renewables“ by Mark Z. Jacobson and Mark A. Delucchi.

John Addison publishes the Clean Fleet Report and presents at conference.

TVA Expands Renewable Energy and Solar Charging

The smart grid charging of electric cars with renewable energy advances. The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI) and Oak Ridge National Laboratory Friday (ORNL) announced that they will deploy solar-assisted charging stations for electric vehicles across the state of Tennessee as part of one of the largest electric transportation projects in U.S. history.

Speaking at an event in Knoxville introducing the Nissan LEAF (NSANY), TVA Chief Executive Officer Tom Kilgore said that the first prototype charging station using solar-generated electricity will be tested at EPRI’s Laboratories for Electric Transportation Application in Knoxville this spring, possibly near the University of Tennessee campus where many electric car enthusiasts may live in multi-unit dwellings where garage charging is not available.

Modular solar charging stations can start with the charging of four cars and expand to over 10 electric cars and may be part of future fueling stations. Both stations and Nissan LEAFs will use J1772 smart charging communication.

This regional electric vehicle initiative is being done in conjunction with ETEC, which has received $100 million matching funding from DOE to install over 12,500 electric charging stations nationwide and a smart grid infrastructure.

The solar-assisted charging stations will use the sun to generate power needed to offset the charge of the electric vehicles during peak power demand periods. While vehicles are charging, the stationary batteries and smart grid controls will provide additional localized support to mitigate any impacts on the power system.

The TVA Fact Sheet also discusses re-use of automotive lithium batteries stating, “Stationary battery storage will provide additional localized grid support to mitigate the impacts of charging multiple vehicles in one centralized location. Stationary storage will also provide future opportunities to re-use automotive batteries that are no longer ideal for vehicles. These batteries may have 60 to 70 percent life left in them and can be used to support the power grid.”

Over 5 GW Renewable Energy

The Tennessee Valley Authority is moving closer to its goal of having more than 50 percent of its power generation from renewable energy by continuing to add solar and wind energy.

A power purchase agreement (PPA) with Iberdrola Renewables (IRVSF), will deliver up to 300 megawatts from the Streator Cayuga Ridge project in Illinois, starting in mid-2010. This 300MW PPA is the largest PPA to date for Iberdrola, the world leader in wind farm assets with over 10GW of wind power and 54GW of additional RE power in its pipeline.

With the new contracts, TVA has purchased up to 1,265 megawatts, enough power to serve more than 300,000 average-size homes in the Tennessee Valley. TVA’s current renewable energy portfolio now includes 5,095 megawatts from hydro, wind, solar, and methane sources. In addition, TVA’s nuclear plants contribute 6,900 megawatts of electricity.

TVA is the nation’s largest public power provider and is completely self-financing. TVA provides power to large industries and 157 power distributors that serve approximately 9 million consumers in seven southeastern states.

John Addison publishes the Clean Fleet Report and speaks at conferences.

Renewables Supply 10 Percent of U.S. Energy

According to the most recent issue of the “Monthly Energy Review” by the U.S. Energy Information Administration (EIA), renewable energy (i.e., biofuels, biomass, geothermal, hydroelectric, solar, wind) provided 10.51% of domestic U.S. energy production during the first nine months of 2009 – the latest time-frame for which data has been published.

Domestic energy production from renewable sources grew by 4.10% during the first nine months of 2009 compared to the first nine months of 2008 – an increase of 0.228 quadrillion Btu’s. Most of that growth came from wind which expanded by 28.46% during the first nine months of 2009 compared to the same period in 2008.

The mix of renewable energy sources consisted of hydropower (35.16%), biomass (30.72%), biofuels (20.25%), wind (8.17%), geothermal (4.52%), and solar (1.17%). Renewable energy’s (RE) contribution to the nation’s domestic energy production is now almost equal to nuclear power, which has been holding fairly steady in recent years at 11.6%.

“When Congress resumes its debate on pending energy and climate legislation in 2010, it would do well to take note of the clear trends in the nation’s changing energy mix,” said Ken Bossong, Executive Director of the SUN DAY Campaign. “Renewable energy has proven itself to be a solid investment – growing rapidly and nipping at the heels of the stagnant nuclear power industry – while fossil fuel use continues to drop.”
In the electricity sector, conventional hydropower accounted for 6.89% of U.S. net electrical generation during the first nine months of 2009 while other renewable energy sources (biomass, geothermal, solar, wind) accounted for 3.32% — for a total of 10.21%. By comparison for the first three quarters of 2008, renewables accounted for 9.18% of net electrical generation.

While renewably-generated electricity has grown, overall net U.S. electrical generation was 4.72% lower for the first nine months of 2009 compared to the first half of 2008 with coal-generated electricity dropping by 12.86%.

The U.S. Energy Information Administration released the “Monthly Energy Review” on December 23, 2009. It can be found at: The relevant tables from which the data above are extrapolated are Tables 1.2 and 10.1. EIA released its most recent “Electric Power Monthly” on December 16, 2009; see: The most relevant charts are Tables 1.1 and 1.1.A

Public Transportation uses more Renewable Energy

By John Addison (9/30/09). More Americans ride on public transit than any time in the past 50 years as more live in cities and most watch their transportation costs. Remarkably, transit operators are moving more people, yet reducing our dependency on oil and generating less carbon emissions. Increased use of solar, other renewables, vehicle electrification, and low-carbon fuels are all part of solution.

New Jersey Transit is preparing for a future where parked cars can be charged with sunlight while people use public transportation. New Jersey Transit is installing 402 kW solar canopies on the rooftops of two large parking garages at the Trenton Amtrak Transit center.

These parking structures are also equipped with 110v charging stations for electric vehicles and plug-in hybrids. Participating in the opening ceremony was the Mid-Atlantic Grid Interactive Cars (MAGIC) consortium, which includes the University of Delaware, Pepco Holdings, PJM Interconnect, Comverge, AC Propulsion, and the Atlantic County Utilities Authority, created to further develop, test, and demonstrate vehicle-to-grid technology.

A few years ago, Los Angeles Metro invested $5 million to install 2MW of solar power as part of a three-year plan to install solar panels on every Metro Bus and Rail facility within its Los Angeles County service area. For example, the solar panels installed on Metro Bus Division 18’s maintenance building rooftop and shading parking structures consist of about 1,600 solar panels that generate 417 kilowatts of electricity, enough power pay for itself in 10 to 11 years.
Now LA Metro will receive $4,466,000 to make its rail system more energy efficient. Red Line Westlake Rail Wayside Energy Storage System: Install wayside energy storage substation (WESS) at Westlake passenger station is at-grade level on the high-speed heavy rail subway Red Line. The nearby traction power substation will be switched off when the WESS is operating. The WESS flywheel technology captures regenerative braking energy when trains slow or stop and transfer back to same train or another train when it starts or accelerates, reducing energy demand and peak power requirements.

This month, the federal administration announced $100 million in Economic Recovery Act funding for 43 transit agencies that are pursuing cutting-edge renewable energy and efficiency technologies to help reduce global warming, lessen America’s dependence on oil, and create green jobs. The 43 winning proposals were submitted by transit agencies from across the country as part of a nationwide competition for $100 million in American Recovery and Reinvestment Act of 2009 (ARRA) funds. Selection criteria included a project’s ability to reduce energy consumption and greenhouse gas emissions and also to provide a return on the investment. The Federal Transit Administration reviewed more than $2 billion in applications for these funds.

AC Transit in Oakland, California, is awarded $6,400,000 to increase photovoltaic capacity to generate “green” hydrogen: Install multiple PV modules at its Central Maintenance Facility in Hayward. Combined with AC Transit’s already-installed solar capacity, this solar installation will produce the renewable electricity equivalent to what will be required to produce 180 kg/day of “green” hydrogen for 12 buses carrying up to 5,000 riders daily, for the current 3 zero-emission buses that carry about 1,000 riders daily.

VIA Metropolitan Transit, San Antonio, Texas, was awarded $5,000,000 to replace conventional diesel transit buses with 35-ft composite body electric transit buses. The project includes quick-charging stations at this terminal layover in route to recharge bus batteries. Grid sourced electrical energy used to recharge the bus batteries will be augmented with solar energy collected with panels procured and installed under this project.

The nation is becoming less dependent on oil as record numbers escape solo driving in gridlock and increasingly use public transit. Electrification of light-rail and buses coupled with renewable energy makes this transportation greener.

Clean Fleet Report Summary of RE Projects

John Addison publishes the Clean Fleet Report and speaks at conferences. He is the author of the new book – Save Gas, Save the Planet – now selling at Amazon and other booksellers.

Real Security after 9/11

Op-Ed by John Addison (9/11/08). My ninth trip to teach a workshop at Two World Trade Center never happened because of the great tragedy 9/11. For years Sun Microsystems, my former employer, had invited me to conduct a series of workshops about technology and strategy. Much of the Wall Street ran on Sun servers, Java applications, and Sun network technology. Reliability, performance, and the ability to recover from disaster were reasons that New York continued to run after the disaster. Sun’s tagline was reality – “The Network is the Computer.”

On September 11, 2001, thanks to heroes like Avel Villanueva the hundreds of people working for Sun Microsystems in Two World Trade Center all quickly evacuated the building and survived. When Avel saw the damage and fire at One World Trade Center, he paged everyone at Sun to leave Two World Trade Center as quickly, “Please, with calmness, go to the nearest exit. This is not a drill. Get out.” He repeated this from the reception area several times. Only after several pages and inspecting the vast 25th and 26th floors did Avel personally leave. Three minutes later the second plane hit Two World Trade Center.

Although it must have been difficult to continue working after such a tragedy, the people at Sun understood that New York depended on their ability to keep working. Within 24 hours almost all Sun employees were doing their jobs at other Sun locations, homes, even nearby cafes. Sun effectively used its own networking technology with an iWork program that enables employees to work at home, at an office near their home, or be highly productive anywhere with a mobile device and wireless network connection.

Flexwork is one way that we are now more secure. The vital work of millions can continue even if a building cannot be accessed or part of a city is closed. Wireless and Web 2 enable collaboration, communication, and knowledge work to continue anytime and anywhere. People are most effective working some days at one location, other times at home, others at a customer or supplier location. We can take advantage of the new flexible workplace solutions to annually save millions of wasted hours and billions of dollars of fuel. Flexible Work Article

Every time that we go through an airport, we are aware that important steps have been created to make U.S. entry and travel more secure. Yes, despite the hassle and loss of some privacy, Homeland Security has been valuable in keeping terrorism at bay.

As our current president reminds us, “We are addicted to oil.” As we continue to spend billions for oil for countries hostile to our way of life, we continue in the words of Thomas Friedman to “finance both sides of the war on terror.” In his new book, Hot, Flat, and Crowded, the Pulitzer Prize winning author shows us how to be free of this addiction.

Americans are not waiting ten years to replace a fraction of our foreign oil with new oil from Alaska. Americans are reducing our oil use now. Confronted with high prices at the pump, U.S. citizens drove 12 billion fewer miles in one month. People are taking advantage of flexwork, public transit, car pooling, sharing rides and sharing vehicles. Two car households are buying fuel efficient cars and increasingly keeping their gas guzzlers parked. 40,000 Americans now drive electric vehicles that do not use a drop of oil. In ten years, we will be driving millions of electric vehicles. EV Reports

Twenty-three percent of our increased supply of electricity in 2007 was from renewable energy. We have enough wind to power the nation including transportation. We have enough solar. Scientific American Article Yes, it will take time, money, high-voltage lines to major markets, and added jobs. Green is producing green. While many areas of our economy are currently suffering, renewable energy and energy efficiency are growing rapidly creating jobs and corporate profits. Global Trends in Sustainable Energy Investment 2008

Real security requires more than airport checks, less foreign oil, and cleaner transportation. Real security starts with the commitment to give our children a better world. Future generations deserve nourishing food, clean water, and protection from disease. Global warming has now put over one billion at risk of not getting enough water and food. Glaciers are disappearing. Water systems are stressed as oceans rise and water tables deplete. Hurricanes attack our coastal cities with increased intensity. Draughts weaken our ability to grow food at affordable prices.

Yes, there are those in Congress who are chanting “drill, drill, drill,” but we cannot end our addiction to oil with more oil. Elected to represent their people, not special interests, these legislators threaten to stop funding renewable energy unless Big Oil can drill anywhere it pleases. Others want to undermine states rights, removing their ability to regulate greenhouse gas emissions within their state.

Fortunately there are wise leaders in both parties committed to put a limit on our greenhouse gas emissions, encourage conservation, put us on a path to a sustainable future that is more secure for our children.

In Mr. Friedman’s new book he recalls a Chinese proverb, “When the wind changes direction, there are those who build walls and those who build windmills.” America can renew its world leadership with innovative solutions to an emerging climate crisis. We can lead in wind power, solar, geothermal, building efficiency, materials that are lighter and stronger, zero emission cars and zero emission cities. From information technology to clean technology, from flexwork to sustainable communities, let’s build windmills not walls.

We can be inspired by heroes like Avel Villanueva who got everyone to safety. We can also celebrate the millions of ordinary heroes who are building a more secure future for our children by living a more sustainable life today.

Copyright 2008 © John Addison. Permission to reproduce on the web with preservation of this notice. Portions of this article will be included in John Addison’s upcoming book.