Posts

Johnson Controls SAFT Lithium Batteries

By John Addison (10/12/10)

AT&T (T), Xcel Energy (XEL), Johnson Controls (JCI), Southern California Edison (SCE), and New York Power Authority have all ordered Ford Transit Connect Electric. These pure battery-electric vans have an electric charge range of 80 miles and are a great fit for many fleet, small business, and delivery applications. Although Nissan and Chevrolet are the center of EV attention, fleets are the early adapters of new vehicles.

In the United States, fleets control some 14 million vehicles. Some fleets placed initial orders for 10 or 20 Transit Connect Electrics; bigger orders could follow in 2011. JCI has ordered 20 Transit Connect Electrics to be part of its global fleet of 19,000 vehicles.

At the heart of these compact Ford electric vans are 28 kWh lithium battery packs made by a joint venture of SAFT and Johnson Controls, #1 maker of automotive batteries, a tier 1 auto supplier, and leader in building efficiency. The other day, I interviewed Mary Ann Wright, Vice President of Global Technology and Innovation Accelerator for Johnson Controls, to better understand the future of electric vehicles and advanced batteries. Johnson Controls is one of the 100 largest corporations in the U.S., with over 60,000 employees.

Partnerships are critical to success in electric vehicles. As the world’s largest manufacturer of lead-acid batteries, Johnson Controls (JCI) works closely with its material suppliers. To accelerate development of lithium batteries, R&D and manufacturing is a joint venture of Johnson Controls – SAFT (JCS).

For speed to market, Ford has partnered with Azure Dynamics (AZD), who integrates their drive system and the Johnson Controls – SAFT (JCS) lithium batteries into the Transit Connect chassis, which is also available in gasoline and CNG versions. My test drive of the Ford Transit Connect Electric demonstrated that it is practical for many fleet applications. JCI owns over 3% of AZD.

Since 2007, Ford and Johnson Controls have worked with leading electric utilities and EPRI. In 2007, Ford announced a partnership with Southern California Edison, the electric utility with the nation’s largest and most advanced electric vehicle fleet. The partnership is designed to explore ways to make plug-in hybrids more accessible to consumers, reduce petroleum-related emissions and understand issues related to connectivity between vehicles and the electric grid. For the 3-year study, Ford Escape Plug-in Hybrids have been heavily used. It will not be until 2012, that consumers can order plug-in hybrids from Ford.

Vice President Wright told me that driving lithium battery packs down in price from industry numbers like today’s $700/kWh to a future of $200/kWh would price electric car on par with cars powered with internal combustion engines. Progress is being made at every level. Manufacturing volume will be a key driver.

The drive for cost reduction will greatly benefit consumers and fleets; cost reduction initiatives will be a mixed blessing for battery suppliers. Last year, Ford had announced that JCS would supply the lithium batteries for its 2012 Plug-in Hybrid which Clean Fleet Report forecasts will be a new Ford Focus PHEV. Now JCS will not be the supplier. Ford has decided to make its own battery packs, and have different manufacturers compete to supply the cells. JCS is the winner for the Transit Connect Electric; LG Chem’s Compact Power is the winner for the Ford Focus Electric; competition has been intense for the PHEV. It appears that Ford has selected the PHEV cell supplier, but has not yet made the announcement.

In this decade, Nancy Gioia, Director Ford Global Electrification, told me that she would like to see Ford reach $250/kWh and have hybrid and electric vehicles represent 10 to 25% of total Ford sales. Ford is making no guarantees for such an ambitious program. Ford lithium cell providers are dealing with a tough customer that could deliver high volumes and continuous improvement.

For $28 billion Johnson Controls, Ford is an important customer, but only one customer. BMW and Mercedes are already using JCS lithium batteries in hybrids. In this decade, JCI sees the biggest opportunity in advanced start-stop, mild, and full hybrid vehicles; with pure battery-electrics being a smaller opportunity. By 2025, Ms. Wright only forecasts 3% of cars being full hybrid and electric.

Look inside a hybrid car and you will see two types of batteries: advanced nickel metal or lithium batteries for the electric motor and a 12V lead-acid battery for the auxiliaries. Lead-acid batteries will continue to be used in hundreds of millions of vehicles including hybrid and those with only an ICE. Johnson Controls continues to advance lead-acid batteries with new VARTA Start-Stop technology. These new batteries are optimal for the micro hybrids now on the road in Europe in over a million cars and coming to the USA. Turning off an engine reduces fuel consumption up to 12% when a vehicle is stationary, such as red lights and rush-hour gridlock. BMW was first to use the micro hybrid approach, now Volkswagen, Audi and others are including start-stop in some models.

When I toured Johnson Controls in Milwaukee, Wisconsin, last year, advancements in both lead-acid and lithium batteries were conspicuous. JCI told me that 98% of the materials in both battery technologies are recycled. As a world leader in energy efficient buildings, Johnson Controls will have the opportunity to repurpose lithium batteries in stationary applications before materials recycling.

Improved battery technology will continue to enable vehicles to use less fuel per mile, show us bluer skies with less air pollution, and reduce our current 97% dependency on petroleum as the only way to fuel a car.

By John Addison, Publisher of the Clean Fleet Report and conference speaker. The author has no position in the stocks mentioned in this article.

Top Utilities Grow Solar Power Despite Recession

By John Addison. Today, the Solar Electric Power Association (SEPA) whose membership includes 110 utilities issued a new report – “2008 Top Ten Utility Solar Integration Rankings” – which identifies the utilities in the U.S. that have the most solar electricity integrated into their portfolio.
The report demonstrates that the utility segment is making a major investment to increase the amount of solar energy in power portfolios, with many utilities doubling the amount of solar power in their portfolio in just one year. The installed solar capacity of the top ten ranked utilities rose 25 percent in a tough economy, from 711 megawatts to 882 megawatts.
The Top 10 Utilities in cumulative megawatts installed represent six states stretching from California to New York:

#1 Southern California Edison (EIX) – CA (441.4MW)
#2 Pacific Gas & Electric (PCG) – CA (229.5)
#3 NV Energy – NV (77.9)
#4 San Diego Gas & Electric (SRE) – CA (49.3)
#5 Public Service of Colorado (Xcel Energy – XEL) – CO (28.5)
#6 LA Department of Water & Power – CA (13.6)
#7 Public Service Electric & Gas Co. – NJ (13.2)
#8 Arizona Public Service Co. – AZ (10.6)
#9 Sacramento Municipal Utility District – CA (10.2)
#10 Long Island Power Authority – NY (7.7)

Although the sunny West Coast dominates this year’s list, other states are coming on strong including Florida, North Carolina, and Florida. Yes, the availability of sunlight is one driver in the expanded use of solar. Other drivers include the retail price of electricity, state government initiatives such as RPS, and cap-and-trade of emission credits.
There are two primary solar technologies, photovoltaic and concentrating solar power. Photovoltaic (PV) technologies utilize a photosensitive material to generate electricity direct from sunlight. PV can also be magnified using mirrors or lenses in low- or high-concentrations known as concentrating photovoltaic technology or CPV. Concentrating solar power (CSP) technologies utilize mirrors or lenses to concentrate sunlight on a point or line and generate high-temperature heat, which is captured to generate electricity in a later process.
Julia Hamm, Executive Director of SEPA, sees strong growth in both PV and CSP. For example, Southern California Edison is planning a massive 1.3GW of CSP with BrightSource. Arizona Power is planning 125MW of PV. Medium- and utility-scale photovoltaic and concentrating solar thermal power projects are adding around 20 billion of dollars worth of investment.
Some European nations that aggressively use wind power, such as Spain and Denmark, have demonstrated that intermittency is quite manageable when renewable energy is less than 20% of the mix. CSP can take the mix much higher by storing energy in liquids like molten salt for delivery when demand peaks.
#5 on the list, Public Service of Colorado (Xcel Energy), is already experimenting with vehicle-to-grid (V2G Report), which will allow the growing population of electric vehicles to provide power to the grid during peak hours. Utilities are experimenting with several forms of large scale grid-storage which will be promising if significant costs are achieved.
Some 30 years ago, solar was dismissed as impractical. Now that PV manufacturing cost is 100 times less than in early days, utilities are taking the lead in the growing demand for solar power.

John Addison writes about clean transportation and renewable energy. He is the author of the new book – Save Gas, Save the Planet – which includes details of the growing use of renewable energy in powering cars, public transportation, and high-speed rail.

Ford Partners to Commercialize Electric Vehicles

By John Addison. Ford will introduce a battery-only commercial van in 2010, followed by a passenger car built on the same technology in 2011, and exciting plug-in vehicles by 2012. To accelerate commercialization, Ford will partner with leaders in drive systems, lithium batteries, specialty electric vehicles, and electric utilities.

Ford will build on its existing success with the Ford Escape Hybrid, the most fuel-efficient SUV on the market, and the Ford Fusion Hybrid, an impressive mid-sized sedan that ranks in the Clean Fleet Report’s Top 10 Sedans.

Last summer, I met with Ford’s Nancy Gioia, Director, Sustainable Mobility Technologies and Hybrid Vehicle Programs, and Greg Frenette, Chief engineer for research and advanced technologies. They discussed Ford’s commitment to continued improvements in fuel economy with gas turbo direct injection (GTDI), lighter vehicle weight without any sacrifice in safety, transmission efficiency, and increased use of electric drive systems. Electric vehicles and plug-in hybrids are definitely in Ford’s future. In fact, Nancy Gioia, has been driving her own Ford Escape Plug-in Hybrid.

The Ford Escape Plug-in Hybrid has been successfully in a number of fleet and research environments. One is Boulder, Colorado, which is becoming Smart Grid City. Working with a major utility, Xcel Energy, residents hope to lower their utility bills, improve energy efficiency, and develop city-wide support for electric vehicles and plug-in hybrids.

University of Colorado Chancellor Bud Peterson and his wife, Val, were the first to let Xcel transform their home to be part of Smart Grid City. Xcel put solar panels on the house, gave them a new smart meter for vehicle charging, and a Ford Escape Hybrid which is converted to have vehicle-to-grid capability. Vehicle-to-grid (V2G) technology is a bi-directional electric grid interface that allows an electric vehicle to take energy from the grid or put it back on the grid. When fully charged, their car plug-in hybrid batteries have enough power to keep their home running for days by using V2G.

Seven more electric utility providers are joining the Ford and Electric Power Research Institute to expand real world testing with Ford Escape PHEVs. Utility partnerships and industry standards will be critical to the expansion of a smart-charging infrastructure and to the long-term viability of V2G.

Ford will have Johnson Controls-Saft develop an advanced lithium-ion battery system to power Ford’s first commercial plug-in hybrid (PHEV). The lithium-ion battery system that Johnson Controls-Saft is designing and manufacturing for Ford includes cells, mechanical, electrical, electronic, and thermal components. Initially the cells will be produced at the supplier’s production facility in France, but the system will be assembled in the United States. The five-year supply agreement includes delivery for committed production in 2012 with a target of at least 5,000 units per year.

Commercial sales of the Ford Escape PHEV are planned for 2012. A fully charged Ford Escape PHEV operates in two modes, electric drive and blended electric/engine drive. It uses common household current (120 volts) for charging, with a full charge of the lithium-ion battery completed within 6 to 8 hours. When driven on surface streets for the first 30 miles following a full charge, the Ford Escape PHEV can achieve up to 120 mpg. This 30-mile range fits the average daily needs of most U.S. drivers.

In 2010, Ford also plans to begin sales of zero-emission battery-electric vans. To speed time to market, Ford will be collaborating with Tanfield to offer battery-electric versions of the Ford Transit and Transit Connect commercial vehicles for fleet customers in the UK and European markets. Tanfield’s Smith has over 100 electric trucks and delivery vans in service with customers today. More details may be announced at the Chicago Auto Show this month.

Battery-electric vans are well suited for many applications where ranges are limited and frequent stopping provides for regenerative braking. USPS has used electric postal vehicles for years. FedEx Express has ordered 10 Modec electric commercial vehicles for use in the United Kingdom.

At the Detroit Auto Show, Ford was showing a new battery-electric sedan developed jointly with Magna International with a 23kWh lithium battery pack. Commercial sales are planned for 2011 for a vehicle similar in size to the Ford Focus. Ford will compete with hundreds of battery-electric vehicle competitors including smaller specialty vehicle makers and Nissan, which is determined to be the early volume leader in freeway-speed electric vehicles. Ford will also be competiting with the plug-in Prius and Chevy Volt.

Given the success of Ford and Mercury hybrids, Ford is positioned to do well as it expands into these plug-in hybrid and battery-electric offerings. Success will lead to success, with larger and smaller Ford EVs being likely past 2012.

John Addison publishes the Clean Fleet Report. His new book – Save Gas, Save the Planet – will be available in paperback and ebook on March 25 at Amazon and other booksellers.