Smart Grids and Electric Vehicles

By John Addison (1/28/08). In the future, utilities will pay you to plug-in your vehicle. Millions will plug-in their electric vehicles (EV), plug-in hybrids (PHEV) and fuel cell vehicles (FCV) at night when electricity is cheap, then plug-in during the day when energy is expensive and sell those extra electrons at a profit. Vehicle to Grid (V2G) technology is a bi-directional electric grid interface that allows a plug-in to take energy from the grid or put it back on the grid. V2G helps solve the major problem that demand for electricity is high during the day when everything from industrial plants to air conditioning is running full blast and then excess electricity is wasted at night.

Several early models of passenger vehicles have enough energy stored in advanced batteries to power several homes for hours. Hybrid electric buses and heavy trucks could power many homes or a school or a hospital in an emergency. Recent announcements demonstrate that electric utilities and some auto makers want to make V2G a reality.

The Smart Grid Consortium, established in December 2007 by Xcel Energy, will select a community of approximately 100,000 residents to become a Smart Grid City using V2G. Potential benefits include lower utility bills for residents, smarter energy management, better grid reliability, improved energy efficiency, and support for EVs and PHEVs.

Current consortium members include Accenture, Current Group, Schweitzer Engineering Laboratories and Ventyx. Smart Grid City will use a realtime high-speed two-way communication throughout the distribution grid. Smart meters and substations will be integral. Installation will be made of thousands of in-home control devices and the necessary systems to fully automate home energy use.

The current electrical grid is poorly designed for distributed generation of power. Individuals and businesses lose months and connect fees when they add solar and other forms of renewable energy to the grid. Smart Grid City will easily support up to 1,000 easily dispatched distributed generation technologies including PHEVs, distributed batteries, solar and wind.

In addition to Smart Grid City, another major EV/V2G initiative is unfolding.

The Renault-Nissan Alliance and Project Better Place have signed a Memorandum of Understanding to create a mass-market for electric vehicles in Israel which is an excellent target market: it has a sales tax exceeding 60% for gasoline vehicles, gasoline costs over $6 per gallon, most driving fits the range of electric vehicles, and the government strongly supports energy independence.

Project Better Place plans to deploy a massive network of battery charging spots. Driving range will no longer be an obstacle, because customers will be able to plug their cars into charging units in any of the 500,000 charging spots in Israel. An on-board computer system will indicate to the driver the remaining power supply and the nearest charging spot. Nissan, through its joint venture with NEC, has created a battery pack that meets the requirements of the electric vehicle and will produce it in mass volume. The entire framework will go through a series of tests starting this year.

The Israeli model is different than the rapid battery swap model that Better Place has promoted as better than “dangerous” fast charging. For the future, Renault is working on development of exchangeable batteries for continuous mobility.

As part of the solution framework, the Israeli government will provide tax incentives to customers, Renault will supply the electric vehicles, and Project Better Place will construct and operate an Electric Recharge Grid across the entire country. Electric vehicles will be available for customers in 2011.

Just as wireless service providers offer smartphones at discounted prices, Project Better Place will offer discounted electric vehicles with usage pricing plans. Pre-paid 600 kilometer cards are one approach that is suggested. A free car on a four-year plan in France is another idea mentioned by Shai Agassi, CEO of Project Better Place. Annual use of an EV should be less than the average cost of $8,000 per year for using a gasoline in many countries including the USA.

Shai Agassi predicts that Israel will have over 100,000 electric vehicles in use by 2010. This will be five percent of the nation’s vehicle population. The number represents a significant step towards energy independence.

Project Better Place has already received over $200 million of venture capital investment. Shai Agassi presented their new business model at Davos. Mr. Agassi was an executive at SAP that lead the software company to being the enterprise software leader ahead of Oracle, IBM, and all others. Agassi’s Davos Insights

Success with V2G would be a double win for electric utilities. Millions of EVs and PHEVs would expand the sale of electricity as an alternative to oil. Utilities could avoid building more dirty peaking power plants. Instead they could buy back electricity at peak hours from vehicle drivers. Clean Fleet Article It would be a financial win-win for all.

John Addison publishes the Clean Fleet Report with archives of over 60 articles and reports about electric vehicles, V2G, biofuels, fleet success and more.

Riding on Sunlight

By John Addison (9/20/07). Electric light rail is a popular way to whisk millions through cities with speed, ease, and minimal emissions. Per passenger mile, source-to-wheels emissions are far less than people trying to navigate busy cities in their cars. Even if there is a coal power plant supplying the electricity, the efficiency of moving masses with efficient electric drive systems results in very clean transportation.

Unfortunately, the initial capital expense of light rail prevents many worthy projects. MTA New York City is spending over $7.5 billion to extend its sub-way. Most light-rail costs over $10 million per mile.

Buses can move millions for a fraction of the cost of light-rail. Bus routes can be easily changed as cities grow, change in shape, and alter in transportation demands. Light-rail tracks are likely to be fixed for over forty years; bus routes may change annually. For most major cities, the ideal is intermodal solutions that include both bus and light-rail.

Now AC Transit in Oakland, California, is making bus travel as appealing as light-rail. Each day, over one thousand people ride on three hydrogen fuel cell buses in Oakland and in environmentally conscious Berkeley. By 2012, five thousand people daily will be riding on twelve such buses. The only emission is water vapor.

At the heart of these electric buses are Siemens electric-motors, similar to the larger motors which power electric light-rail. The motors are powered by electricity generated from 120kW fuel cells and from 95kW of batteries. The batteries are also used to capture braking and downhill energy. The batteries are recharged nightly, making these buses plug-in hybrid hydrogen fuel cell buses.

The hydrogen is made by onsite reformation of natural gas. Basically CH4 is combined with steam (H2O) to produce hydrogen. The electricity to power the reformation and the compression of the hydrogen gas is from solar power. The 150 kg/day of hydrogen is used by the three buses and up to eleven Hyundai vehicles for supervisors.

The net result is electric buses that can run hundreds of miles up 18 percent grades, and then be cleanly refueled in minutes. By 2010, the buses are likely to run 16 hours daily, up from the current eight. In five years, AC Transit is likely to buy at least seven hydrogen buses annually, staying ahead of California’s zero-emission bus mandate.

These are the most advanced buses used in the world with 40-foot Van Hool A330 bus chassis modified to accommodate UTC’s PureMotion™ 120 kW fuel cell power system and ISE’s hybrid-electric drive system. Hydrogen tanks on the roof give the bus a range of 300 to 350 miles, and batteries recharged during braking can provide an extra 95kW of power for acceleration and climbing steep grades.

HyRoad, this exciting model of public transportation, was made possible by more than $21 million of funding from the Bay Area Air Quality Management District, California Air Resources Board, California Energy Commission, California Transportation Commission, CalStart, Chevron Corporation, Department of Energy, and the Federal Transit Administration.

The National Renewable Energy Laboratory released a preliminary report on its evaluation of AC Transit’s fleet of fuel cell buses. The report includes eight months of performance data on three fuel cell buses in service, as well as data from a fleet of diesel control buses.

AC Transit; SunPower (SPWR); MMA Renewable Ventures; and PG&E (PCG) dedicated the AC Transit’s state-of-the-art 621-kilowatt solar electric system. The system, located on AC Transit facilities in Hayward and Oakland, is expected to generate approximately 767,000 kilowatt hours of power each year.

Over the 30-year life of the system, AC Transit expects to save $5 million in utility costs as a result of the clean, renewable solar power that the system will generate. It will offset the production of more than 14.5 million pounds of carbon dioxide emissions – equivalent to planting 2,000 acres of trees or removing 1,400 cars from California’s highways.

“AC Transit is committed to reducing emissions of greenhouse gases and improving the quality of life for the entire region in which we operate,” said AC Transit General Manager Rick Fernandez. “While installing a solar system to power our facilities makes a great deal of financial sense, it will also provide more than enough power to offset the 189,000 kilowatt hours per year required to operate AC Transit’s hydrogen production facility, and help lower the overall amount of energy we use from conventional sources.”

Instead of spending millions to install the solar system, AC Transit arranged to pay 13.5 cents per kilowatt hour to MMA Renewable Ventures, which finances and owns AC Transit’s solar power systems under a SunPower Access™ program. “AC Transit selected an innovative financing structure to effectively meet its financial goals and environmental objectives,” said Matt Cheney, CEO of MMA Renewable Ventures. “With its forward-thinking approach and commitment to clean energy, AC Transit is demonstrating that solar power is an affordable option for public agencies concerned with reducing carbon emissions.”

“AC Transit is an environmental leader that is doing its part to address our ongoing energy challenges,” said Howard Wenger, SunPower vice president. “By generating solar power, AC Transit is reducing demand from the utility grid, reducing operating costs, and improving air quality for its community. This energy solution saves money while helping the environment.”

A large portion of the installation cost of these solar systems was covered by a $1.9 million incentive from PG&E, under California’s Self Generation Incentive Program. Through this program, PG&E can provide almost $950 million in incentives over the next 10 years to help customers buy their own solar systems.

In the past twenty years, solar power has dropped 90% in price due to technology breakthroughs and production volume. Over the next twenty years, we will see the same improvement with hydrogen transportation. Already, the hydrogen used cost AC Transit no more per mile than diesel fuel used in similar buses.

As fuel cells reach lives beyond 10,000 hours, and as costs are significantly reduced, advanced transportation like AC Transit’s HyRoad will become available worldwide. When it does, we can thank AC Transit and its partners for leading the way.

John Addison publishes the Clean Fleet Report ( September 24 to 27 he will be researching future articles at Solar Power 2007. On October 25 he will be a featured speaker at the California Hydrogen Business Council. Permission is granted to reproduce this story.

Muggles Perform Magic in California

By John Addison (7/30/07) Everyone is mesmerized with Harry Potter and the fate of the world. My niece proudly wears a wrist band proving that she waited seven hours to buy book seven. My brother, reported that 30% of passengers on his business flight were reading the book. Harry and his fellow wizards have access to all sorts of magical transportation – flying broomsticks, flying carpets, magical flying creatures, portkeys, floo powder and floo networks, metamorphosing, apparition and disapparation Muggles, we regular human non-wizards, are also capable of a bit of magic. In California, millions have been transported with zero emissions. Not with Knight Buses, but with zero-emission buses, light-rail, cable cars, and zero-emission cars.

The California Air Resources Board (ARB) adopted the Zero Emission Vehicle (ZEV) Regulation in 1990 to reduce the emissions from light-duty vehicles and accelerate development of zero emission vehicles. Over the years, the regulation has been modified to deal with objections and lawsuits from the automotive industry that contend that battery-electric and fuel-cell vehicles are not ready for prime time.

The regulation has made California the leader in clean vehicles and cleantech. Estimates are that by the end of 2005, the following quantities of these vehicles had been placed in California: 130 fuel cell, 4,400 battery-electric, 26,000 25-mile per hour speed battery-electric, 70,000 AT-PZEV vehicles such as the Prius, and 500,000 PZEV vehicles.

There are currently twenty-one auto manufacturers subject to the ZEV regulation. Six are defined as large volume manufacturers: Toyota (market leader), General Motors, Ford, Honda, DaimlerChrysler and Nissan. The remaining 15 are intermediate volume manufacturers. Intermediate manufacturers can meet the regulation entirely with PZEVs.

ARB staff recommends that “the Board examine more even treatment of BEVs in the regulation as compared to FCEVs. For example, BEVs and FCEVs could be offered equal credit before 2012. By returning to technology neutrality and considering BEVs and fuel cell vehicles similarly, the ARB might induce some manufacturers to choose to pursue battery electric vehicle development instead of fuel cell vehicle development. The outcome would be that overall ZEV production could be greater, but fewer fuel cell vehicles may be produced.”

ARB has been holding public hearings and getting an earful. The latest public workshop was on July 24. Leading environmental groups such as NRDC, UCS, and the American Lung Society do not want reductions in the fuel cell vehicle requirements.

The proposal to ARB which generated the most interest was from A123, a leading supplier for advanced lithium batteries. A123 has also purchased Hymotion to be the leading plug-in hybrid (PHEV) system integrator, winning important contracts from the State of New York and South Coast Air Quality Management District. A123 stated that they have been selected for GM VEU and Volt vehicle programs and are being considered by future PHEV programs from makers such as Volvo.

An A123 kit will fit in spare tire space of most hybrids including the Toyota Prius, Honda Civic Hybrid, and Ford Escape Hybrid. Kits and authorized installers are expected in 2008. The A123 presenter, for his own converted Prius has used only 9 gallons of gasoline to travel 1,200 miles. He achieves up to 177 miles per gallon.

There are now over 40 million light electric vehicles now in use worldwide. Demand is exploding in Asia. ARB is considering increasing its modest credit for 25-mile per hour neighborhood electric vehicles (NEV).

Because plug-in hybrids and light electric vehicles are in the regulation, California should have no need to relax other requirements. Rapid advancements have been made in both high-performance and low-cost battery electric vehicles. Hydrogen fuel cell vehicles (FCV) have demonstrated ranges of 300 miles, 24 stations are in operation, and there are enthusiastic responses from those who drive these FCV on a daily basis. Next year, over 40 PHEV will be on California’s roads.

Permission is granted to reproduce this article which is copyright John Addison. The complete article with links to the ZEV program is at John Addison publishes the Clean Fleet Report. He is currently inviting literary representation and a publisher for his new book Save Gas, Save the Planet.