Biofuel Industry – No Money, No Respect

For the moment, the price at the pump is reasonable. A spike in demand or a terrorist disruption, however, will quickly remind us that we are desperately dependent on oil as we continue to consume 140 billion gallons of gasoline per year. Even in these recessionary times of moderate demand, we are running out of easy to extract oil from dessert sands. We are turning to sources of unconventional oil, such as tar sands in Canada, to produce oil with ever increasing greenhouse gas emissions.

For a while corn ethanol looked like a promising way to end our addiction to oil. Now we are like the character in a Woody Allen comedy who explains, “I used to be a heroin addict; now I’m a methadone addict.” At a time when a billion people go hungry, many as a result of disappearing water on this heating planet, fuel from food is not the answer.

Needed is fuel from wood and waste, not food and haste. Some of the world’s best minds are focused on fuel from cellulosic and waste sources, in some cases from biological sources that remove CO2 from the air and enrich depleted soil. I am writing this article from the 31st Symposium on Biotechnology for Fuels and Chemicals sponsored by NREL. 800 global bioscientists have gathered in San Francisco to share their research and showcase their progress.

Many at the conference expressed concern and discouragement. Companies that were once darlings of Wall Street have gone bankrupt. Dozens of ethanol plants have closed as oil prices dropped. Many promising second generation plants cannot get built due to lack of project financing. People with the money see the risk as too high.

There continue to be zero commercial scale (20-million gallon per year and bigger) cellulosic ethanol plants, despite past glowing press releases that declared that they would now be running.

The biofuels industry is also under attack due to food-from-fuel and land use issues. Over one billion people are hungry or starving. Agricultural expert Lester Brown reports, “The grain required to fill an SUV’s 25-gallon tank with ethanol just once will feed one person for a whole year.” Scientific American: Could Food Shortages Bring Down Civilization?

Europe, now California, and soon many U.S. states, now insist that land use must be considered in evaluating biofuels.

During the middle of the conference, a workshop for the media was held. The theme of the workshop quickly became clear – the industry problems were the fault of regulators and we the press.

Professor Bruce Dale, Michigan State University, dismissed corn/soy land use change as an “emotional issue.” He continued, “The California Low Carbon Fuel Standard is intellectually bankrupt.” To demonstrate the flaw of land use, he stated that replacing a gasoline powered vehicle with an electric vehicle would only increase the demand for coal power and therefore do nothing to reduce greenhouse gases.

The example is quite flawed. Automakers consistently tell me that their gasoline powered vehicles are about 15 percent efficient and their electric vehicles are 60 to 70 percent efficient. EVs need much less energy. Even if you could find an EV powered purely with coal, it would produce less lifecycle emissions than a comparable gasoline or corn ethanol fueled vehicle. According to the latest figures published by the U.S. Energy Information Administration (EIA), non-hydro renewable sources of electricity enjoyed double-digit growth during the past year while coal was down by 1.1 percent. Incremental demand for electricity is bringing more renewable energy on-line.

In fact, the California Low Carbon Fuel Standard (LCFS) is based on the peer-reviewed work of scientists using Argonne National Labs GREET model. The work, industry comments, and findings are all available at

The LCFS encourages the reduction of greenhouse gas emissions per unit of energy delivered to the wheels of vehicles. The scientific analysis behind the LCFS includes these examples of grams of CO2e emissions per mega joule of energy:

Ø Gasoline Oil Refined 92
Ø Diesel ULSD Refined 71
Ø Diesel Coal-to-Liquid 167
Ø Biodiesel Midwest Soy 30
Ø Ethanol Corn with Coal Electricity 114
Ø Ethanol Cellulosic from Poplar Trees -12
Ø Electricity California Average 27

If the biofuels industry sees a future in biodiesel and cellulosic ethanol, the industry should be encouraged by the findings of the scientists contributing to the LCFS. On the other hand, if the industry is only betting its future on corn ethanol, then the regulation is a threat.

LCFS will not help the expansion of E85 stations for flexfuel vehicles. For the 2009 model year, the best rated car running on E85 in the United States was the Chevrolet HHR, with a United States EPA gasoline mileage rating of 26 miles per gallon, and an E85 rating of only 19 miles per gallon – and that’s the best from Detroit with mileage on all other U.S. flexfuel vehicles being worse. In other words, if you passed on using E85 and drove a hybrid with good mileage, you would double miles per gallon and produce far less greenhouse gas emissions than any U.S. flexfuel offering. Top 10 Low Carbon Footprint Four-Door Sedans for 2009

While the press was being scolded and air regulators were being metaphorically burned at the stake, most conference attendees had an afternoon to enjoy San Francisco. Many traveled using electric-powered buses and the hydro powered BART rapid transit system that carriers 100 million riders annually. So much for the press conference dismissing electric powered transportation as not being feasible.

Although attacking regulators, environmentalists, and advocates for the hungry will not save the biofuel industry, the federal government may save it. As the conference unfolded in California, a major announcement was made in Washington, DC, by U.S. Secretary of Energy Steven Chu when he announced that $786.5 million would be made available to accelerate advanced biofuels research and to help fund commercial-scale biorefinery demonstration projects.

One irony for the biofuel industry is that as oil prices increase, their economic model improves, but consumer demand for fuel moderates as consumers drive fewer miles, use more public transportation, and soon switch in growing numbers to electric vehicles. For decades, however, fuel will be in demand for many passenger vehicles, heavy-vehicles, long-distance goods movement, ships and airplanes. The opportunity is ripe for delivering fuel with lower lifecycle emissions. Promising cellulosic biofuel companies will be covered in my next article.

John Addison publishes the Clean Fleet Report. He is the author of a new book about the future of transportation – Save Gas, Save the Planet.

3 replies
  1. Marcel F. Williams
    Marcel F. Williams says:

    There's no logical reason to be using food to produce fuel. We should be using urban, agricultural,and forest waste to make to make methanol which could either be used as a fuel or converted into gasoline. Biowaste can also be used to make jet fuel and diesel fuel. But ethanol is simply the wrong direction for the US.

  2. Anonymous
    Anonymous says:

    You're a bit hasty in condemning the ethanol industry. This bias undermines the transition to cellulosic biofuel. How are these new plants going to be financed if the current industry is threatened by the successes of the fossil fuel campaign? Uninformed reporting on biofuel issues plays right into the hand of the oil interests protecting their market share.Food versus Fuel is not so clear-cut as you assume. And the indirect land-use assumptions are also questionable.This statement, for example, is all spin, no substance: "There continue to be zero commercial scale … cellulosic ethanol plants, despite past glowing press releases that declared that they would now be running." I can't recall reading any press stating these large plants would be running by now. Demo plants and one commercial scale plant are now being built, and dozens of plants are being engineered and seeking financing.It's also irresponsible to highlight the GHG emissions of coal-fired corn ethanol, when only a few of the 200 ethanol plants use coal. Omitting the LCFS calculated GHG footprint of corn ethanol plants reveals your bias.If you truly desire progress away from fossil fuel, then a more balanced approach to biofuel issues would help get us there. Warren Shoemaker

  3. John Addison
    John Addison says:

    Warren, the article states that the findings in the 167-page LCSF technical report show ethanol corn when coal electricity used to be 114 grams of CO2e emissions per mega joule of energy Vs. 92 for gasoline. The article also includes biofuels with very favorale GHG lifecycle emissions. My next article will cover cellulosic plants of commercial scale that are coming online (although some later than originally announced). I encourage all to go to the LCFS site for responsible coverage of lifecycle issues.

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply